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Abstract

Tumor-derived exosomes (TDEs) have been shown to impede anti-tumor immune responses via their
immunosuppressive cargo. Since dendritic cells (DCs) are the key mediators of priming and maintenance of T cell-
mediated responses; thus it is logical that the exosomes released by tumor cells can exert a dominant influence on
DCs biology. This paper intends to provide a mechanistic insight into the TDEs-mediated DCs abnormalities in the
tumor context. More importantly, we discuss extensively how tumor exosomes induce subversion of DCs
differentiation, maturation and function in separate sections. We also briefly describe the importance of TDEs at
therapeutic level to help guide future treatment options, in particular DC-based vaccination strategy, and review
advances in the design and discovery of exosome inhibitors. Understanding the exosomal content and the
pathways by which TDEs are responsible for immune evasion may help to revise treatment rationales and devise
novel therapeutic approaches to overcome the hurdles in cancer treatment.
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Introduction
Exosomes are nano-sized (30–150 nm) extracellular vesi-
cles released virtually by all types of cells and their con-
tent robustly mirrors that of the parental cells [1]. In
particular, tumor cells were shown to actively secrete a
large amount of exosomes to provide intercellular com-
munication with surrounding as well as distant cells [1].
These extracellular vesicles contain several types of
mRNAs, micro RNAs, functional surface proteins, en-
zymes and lipids, which enable them to exert local or
systemic effects through direct interactions with the cell
surface receptors or via transferring their contents into

recipient cells through plasma membrane fusion, endo-
cytosis, phagocytosis, micro pinocytosis, and lipid raft-
mediated internalization [2, 3]. Compelling evidence
demonstrates that tumor-derived exosomes (TDEs)
function in favor of tumor progression and crucially par-
ticipate in nearly all aspects of cancer development, such
as angiogenesis, proliferation, and metastasis [2].
In addition, TDEs also give an advantage to tumor

outgrowth by negatively regulating anti-cancer immune
responses [4]. Several studies have shown that TDEs
could inhibit anti-tumor immunity either through in-
ternalization by the target cells or through receptor-
ligand interactions [5, 6]. In this regard, it has been
acknowledged that TDEs harbor a plethora of
membrane-bound proteins (Fas-L, PD-L1, etc.) that can
directly inhibit the anti-tumor activity of effector CD8+
T cells and NK cells [7]. More importantly, on the other
hand, exosomes released from tumor cells can also be
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taken up or interact with antigen presenting cells (APCs)
and may indirectly induce antigen-specific tolerance [8].
Of particular note, TDEs especially target dendritic cells
(DCs) which are the most important and effective APCs
that orchestrate immune responses by priming naive T
cells and providing subsequent signals required for the
activity of effector T cells [8]. In this regard, it has been
shown that TDEs largely inhibit the differentiation of
DCs from bone marrow progenitors and monocytes,
while strongly promote the development of tumor sup-
portive cells, such as myeloid-derived suppressor cells
(MDSCs) [9–11]. Tumor-derived exosomes were also
shown to carry several bioactive molecules that can
interfere with the maturation of DCs, thus demolishing
their capability in inducing effective anti-tumor re-
sponses [12]. Moreover, others have shown that TDEs
can alter the function of well-differentiated mature DCs.
According to the published data, the interaction/uptake
of TDEs by mature DCs renders them to an immuno-
suppressive phenotype, which thereby can improve
tumor immune evasion [13, 14].
On the contrast, since TDEs contain a variety of

tumor-associated antigens, there is a large degree of con-
sensus that exosomes released by cancer cells can stimu-
late DCs to support potent anti-tumor immunity
development [15]. However, growing evidence indicates
that the dominant effect of TDEs is immunosuppression,
rather than immunostimulation [16]. Taken together,
TDEs seems to negatively affect DCs, as the key media-
tors of immune responses, to prevent the development
of effective anti-tumor immunity. However, a literature
review on the molecular mechanisms by which tumor-
derived exosomes interfere with the biology of DCs is
still lacking. Therefore, in the present study, we provide
the published evidence on how TDEs could impair the
differentiation, maturation, and function of DCs. We
then briefly discuss the lessons learned from TDEs-
mediated DCs abnormalities for the translation of re-
search into practice, and review advances in the design
and development of exosome inhibitors as potential ad-
junctive therapy for cancer.

Tumor-derived exosomes alter differentiation of DCs
Dendritic cells (DCs) are rare types of immune cells
that differentiate from both myeloid and lymphoid
progenitors in the bone marrow or derive from
monocytic cells, and are largely localized in tissues
[17]. Several subgroups of DCs have been identified,
but plasmacytoid DCs (pDCs) and conventional DCs
(cDCs) are the most common populations. Plasmacy-
toid DCs mainly produce type I interferons, however
the latters are key Ag presenting cells (APCs) opti-
mally initiate naive/resting T cell responses [18]. Be-
cause of their specialized characteristics, cDCs actively

capture, internalize, and process the foreign patho-
genic Ags and self-non-tumor or tumor-derived Ags
and then present to CD4+ and CD8+ T cells via the
MHC-II and MHC-I molecules, respectively [18]. It is
now evident that the abnormal differentiation of DCs
is one of the main contributors of non-responsiveness
to tumors [19, 20]. The impaired differentiation of
DCs in the tumor context has been highlighted with
the dominant infiltration of myeloid-derived suppres-
sor cells (MDSCs) and decreased number/accumula-
tion of mature DCs in several malignancies including
breast, lung, cervical, and colorectal tumors [21].
Additionally, clear evidence indicates that the defects
of DCs in cancers are systemic rather than localized
to the tumor sites [22]. These observations imply that
the tumor-derived soluble factors might potentially
play a major role in the defective differentiation of
DCs in the tumor context [23]. Several factors derived
from tumors as well as associated cells from the sur-
rounding tumor microenvironment (TME) have been
described to interfere with DCs differentiation. How-
ever, growing data have emphasized the role of
tumor-derived exosomes (TDEs) in the loss of stimu-
latory APC activity and subsequently diminished anti-
tumor immune responses in tumor-bearing hosts [11].
Here, we summarized the published data on the
mechanisms by which TDEs could alter the differenti-
ation of DCs in tumors.
Early studies have shown that the administration of

TDEs considerably increases a population of undifferen-
tiated myeloid progenitors [24]. Indeed, an increment of
myeloid-derived suppressor cells (MDSCs) is the hall-
mark of defects in DCs differentiation [25]. Several lines
of evidence have indicated that TDEs can corrupt mye-
lopoiesis in the cancer by blocking the differentiation of
myeloid precursors (including DCs precursors), which
results in fewer DCs and an accumulation of myeloid
cells with immunosuppressive function called MDSCs
[21]. The molecular mechanisms that drive this process
are not completely understood and various biomolecules
are assumed to be involved in the TDEs-mediated accu-
mulation of MDSCs. Previous studies have shown that
prostanoids (i.e. PGE2) derived from cyclooxygenase-1
(COX-1) and COX-2 can inhibit the differentiation of
both bone marrow- and monocyte-derived DCs [26, 27].
Tumor-derived exosomes have also been shown to carry
functional COX-2 enzymes and its product, PGE2 [16,
28, 29]. It was demonstrated that the internalization of
TDEs containing PGE2 and TGF-β by bone marrow pre-
cursors impedes DCs differentiation and instead pro-
motes the induction of MDSCs [30, 31]. However,
targeting exosomal PGE2 and TGF-β abolished the abil-
ity of TDEs to induce MDSCs and restored DCs differ-
entiation, indicating their pivotal role in DCs
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abnormalities [30, 31]. Moreover, it was shown that
COX-2 can be exported via TDEs into target cells, which
may further increase PGE2 secretion in TME and pro-
mote tumor growth [28, 32]. Tumor-derived exosomes
were also reported to induce MDSCs through STAT-3
dependent manner [33]. Multiple evidence shows that
TDEs release considerable amounts of IL-6, a well-
known STAT-3 activator, which has widely been recog-
nized to inhibit DCs differentiation from CD34+ bone
marrow progenitors [18, 33, 34]. Additionally, IL-6 re-
leased from TDEs has also been found to promote pro-
liferation and inhibit apoptosis of MDSCs [21, 30, 35].
Likewise, it was demonstrated that exosomes derived
from TS/A murine mammary tumor cells target human
monocytes and myeloid precursors of the bone marrow
and block their differentiation into DCs, mainly via IL-6
and STAT3 pathways [11]. Tumor-derived exosomes
were also shown to contain several other activating com-
ponents of the STAT-3 pathway, including HSP70 and
HSP72, which can induce the development of MDSCs
[36, 37]. Nevertheless, other intracellular pathways might
also be involved in TDEs-mediated DCs abnormal differ-
entiation. In this regard, it has been shown that
melanoma-derived exosomes can inhibit the differenti-
ation of DCs from bone marrow progenitors with wild-

type MyD88; however, no inhibitory effect was observed
in MyD88-deficient precursors, demonstrating that
TDEs can exploit the MyD88 pathway for preventing
DCs differentiation [38].
More recent data show that human leukocyte antigen G

(HLA-G) molecules are also expressed on TDEs and play
a key role in inhibiting DCs differentiation [39]. HLA-G is
a non-classical MCH-I molecule that aberrantly expressed
in a variety of human tumors and mediates suppression of
T cells, NK cells and DCs through binding to inhibitory
receptors [40, 41]. It has been found that cancer stem cell
(CSC)-derived exosomes bearing HLA-G can inhibit
monocyte-derived DCs differentiation [39]. However,
blocking HLA-G with antibodies nullified the effects of
CSC-derived exosomes on DCs differentiation suggesting
that HLA-G carried by extracellular vesicles plays an im-
munomodulatory role [39] (Fig. 1). Additionally, tumor
exosomes are assumed to inhibit the differentiation of
DCs through metabolic reprogramming [18]. Of note,
TDEs are widely enriched in glycolytic enzymes convert-
ing glucose into extracelullar ATP and lactate in the local
tumor-microenvironment [42, 43]. The accumulation of
lactic acid can restrain the differentiation of DCs, whereas
promoting the expansion of myeloid-derived suppressor
cells (MDSCs) [44, 45] (Fig. 1).

Fig. 1 Tumor-derived exosomes inhibit differentiation of dendritic cells. Tumor-derived exosomes contain several biomolecules including COX-2
(cyclooxygenase-2), PGE2 (prostaglandin E2), TGF-β (transforming growth factor- β), IL-6, HSP70, HSP72, HLA-G and glycolytic enzymes, thereby
could affect bone marrow progenitors and inhibit differentiation of DCs and monocytes, while promoting the polarization of myeloid-derived
suppressor cells (MDSCs). Exosomes derived from tumors can also impede monocytes differentiation toward DCs. Mo-DCs: monocyte-derived
dendritic cells
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Tumor-derived exosomes alter maturation of DCs
Under the normal conditions, DCs are in an immature
state expressing higher levels of phagocytic receptors,
while characterized by low antigen-presenting capabil-
ities [46]. Upon being induced by pathogen-associated
molecular patterns (PAMPs) or damage-associated mo-
lecular patterns (DAMPs) through receptors such as
CD40, TNF-R, IL-1R, and TLRs, DCs acquire a mature
state expressing higher levels of antigen-loaded MHC-I
and MHC-II molecules as well as costimulatory signaling
B7 family molecules (e.g., CD80 and CD86) [46]. The
presence of mature tumor-infiltrating DCs has been
linked with the magnitude of anti-tumor T cell re-
sponses and a better prognosis in cancer patients [47].
However, in the context of tumors, DCs are mainly
found in an immature phenotype unable to support nor-
mal levels of antigen-specific T cell expansion, leading
to the induction of peripheral tolerance [48]. It is often
unclear whether the immature phenotype of DCs reflects
a simple failure of tumors to support the maturation and
activation of these cells or, alternatively, active suppres-
sion of DCs maturation by tumors [26]. Up to now, sev-
eral attempts have been made to resolve the intricacies
dampening tumor-associated DCs maturation; but the
limiting number of DCs that can be isolated from
tumor-bearing animals and cancer patients and the com-
plex nature of the cells and soluble factors present
within the TME have made it difficult to gain mechanis-
tic insights into the tumor-associated-impaired DC mat-
uration in vivo [26]. In this regard, monocytic- and bone
marrow-derived DCs (BMDCs) have been employed as
suitable alternative ex vivo models to study the defective
maturation of DCs by tumor cells or tumor-derived sol-
uble factors [49]. The most recent studies, summarized
in the following section, suggest that TDEs harboring
several immunosuppressive biomolecules actively par-
ticipate in the impaired maturation of DCs [12, 50].
As a pivotal mechanism, DCs actively phagocyte tumor

cells that have undergone immunogenic cell death, then
process their antigens and present to T cells (priming
their activation), but environmental sensing and phago-
cytosis, to some extent, are inhibited in tumors. For in-
stance, it has been shown that the alarmin high mobility
group protein B1 (HMGB1) recruits nucleic acids from
dead tumor cells into DCs endosomes, leading to the in-
nate sensing of tumors [51]. However, the T-cell im-
munoglobulin and mucin-domain containing-3 (TIM-3)
highly expressed on tumor-infiltrating dendritic cells
(TIDCs) interacts with the nuclear protein HMGB1 and
suppresses nucleic acids sensing-mediated stimulation of
DCs [51]. Tumors were also shown to secrete higher
amount of exosome-bound TIM-3 and Galectin-9 (lig-
and for TIM-3) which can be bound to TIM3 receptors
on the TIDC and interfere with the antigen recognition,

while may also induce a cascade of inhibitory signals
[52]. Based on a research, exosomes isolated from NSCL
C patients have exhibited higher content of Galectin-9
compared to the exosomes from healthy control donors
[52]. Likewise, the exosomes isolated from the cerebro-
spinal fluid (CSF) of the patients with glioblastoma mul-
tiforme (GBM) have also been shown to contain higher
amounts of Galectin-9 [53]. It was demonstrated that
the Galectin-9 on the surface of GBM-CSF-derived exo-
somes can interact with the TIM3 receptor on dendritic
cells (DCs) in the CSF to inhibit antigen recognition,
processing and presentation by these cells, resulting in
the failure of the cytotoxic T-cell-mediated antitumor
immune responses [53]. Therefore, tumor-derived exo-
somal Galectin-9 acts as a major regulator of tumor pro-
gression by inhibiting DCs maturation and antigen
presentation to activate cytotoxic T-cells in the CSF and
that loss of this inhibitory effect can lead to durable sys-
temic antitumor immunity [53]. As mentioned, TDEs
also harbor TIM-3, but it is not clear whether the exoso-
mal TIM-3 can bound HMGB1 and interfere with nu-
cleic acid sensing of DCs or not (Fig. 2).
The CD47 a “don’t eat me” signal, is another factor

widely expressed by tumors which inhibits the sensing of
mitochondrial DNA released by cancer cells via inter-
action with signal-regulatory protein-α (SIRPα) on DCs
[18, 54]. By engaging SIRPα, CD47 limits the ability of
DCs and macrophages to engulf tumor cells, which acts
as a major phagocytic barrier [55]. The CD47 was also
detected on the surface of exosomes released by tumors
and the mouse mammary carcinoma-induced MDSCs,
and was correlated with the enhanced retention of exo-
somes in the circulation [56, 57]. It has been suggested
that the CD47 expression can protect TDEs from phago-
cytosis by monocytes and macrophages [58]. This was
proven, since CD47 deprived exosomes exhibited signifi-
cantly less retention, suggesting that CD47 presence on
exosomes limits their clearance by circulating SIRPα+
CD11+ monocytes [59]. It seems that by expressing
CD47, TDEs may avoid to be taken up by DCs, but still
can efficiently deliver their pro-tumorigenic contents.
Exosomal CD47 has also been proven to facilitate
MDSCs chemotaxis and migration, and accumulation of
MDSCs in TME can further impair DCs maturation
[60–62]. In light of these findings, TDEs harboring
CD47 are assumed to play crucial roles in the tumor
escape from immune cells (Fig. 2).
Others have also shown that TDEs enriched in

S100A9 molecules are also capable of inhibiting DCs
maturation [63]. A recent study revealed that exosomes
isolated from afferent lymphatic fluid in patients with
primary cutaneous melanoma have higher levels of
S100A9 [63]. Immunohistochemistry and immunogold
electron microscopy results confirmed the trafficking of
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tumor-derived S100A9 containing exosomes along the
lymphatic path [63]. It was observed that the accumula-
tion of S100A9 positive exosomes in the first node
draining from the primary tumor, sentinel lymph node
(SLN), is closely associated with a dysfunctional immune
profile including reduced expression of dendritic cell
maturation markers [63]. Importantly, this phenotype
was observed prior to evidence of nodal metastasis [63].
These findings led to the conclusion that TDEs cargo,
such as S100A9, may serve as early mediator of tumor-
induced immune subversion in regional lymph nodes,
establishing the niche for metastatic outgrowth. Like-
wise, others have also suggested that melanoma-derived
extracellular vesicles (EVs) may participate in the preme-
tastatic niche formation through cargo-specific

polarization of DCs [50]. Accordingly, it was found that
DCs matured in vitro in the presence of melanoma EVs
had significantly impaired expression of CD83 and
CD86 as well as decreased expression of Th1 polarizing
chemokines Flt3L and IL15, and migration chemokines
MIP-1α and MIP-1β compared to liposome-treated DCs
[50]. Profiling of melanoma EV cargo revealed shared
proteomic and RNA signatures including S100A8 and
S100A9 protein cargo [50]. Further experiments showed
that similar to melanoma EVs-treated DCs, the incuba-
tion of DCs with S100A8 and S100A9 proteins compro-
mised their maturation in vitro. These findings suggest a
role for S100A8 and S100A9 molecules in TDEs-
mediated DCs abnormalities. These are in agreement
with the earlier studies indicating that the higher level of

Fig. 2 Tumor-derived exosomes inhibit maturation of dendritic cells. Exosomal galectin-9 can interact with its cognate TIM-3 receptors on DCs and
inhibit antigen-sensing by them. The expression of CD47 on TDEs inhibits their phagocytosis by immune cells and improves their retention in the
circulation. Exosomal S100A9 downmodulates the maturation of DCs and decrease the expression of co-stimulatory CD83, CD86, IL-12 and IL-15 by
DCs. Tumor exosomes induce DCs to express TGF-β, which further increases TGF-β expression in an autocrine loop, and robustly inhibits anti-tumor
immunity. Higher levels of glycolytic enzymes detected on TDEs can impair DCs maturation by increasing ATP and lactate levels In TME
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S100A9 in the TME is, in part, responsible for the
tumor-associated dendritic cells (TADCs)-mediated che-
moresistance of breast cancer [64]. There is also other
evidence indicating the importance of exosomal S100A9
in the altered maturation of DCs. In this regard, it has
been demonstrated that paclitaxel can restore the matur-
ation of DCs by decreasing the production of S100A9
and TNF-α by MDSCs, as the major source of the sol-
uble/exosomal S100A9 in TME [65, 66]. In addition,
exosomes enriched in S100A9 were also isolated from
G-MDSCs and CLL patients, and were shown to induce
the stemness of colorectal cancer cells by activating the
NF-κB pathway [67]. All these findings indicate that
tumor exosomes containing S100A8 and S100A9 pro-
teins suppresses DCs maturation and improves the pre-
metastatic niche formation in tumor-draining lymph
nodes (Fig. 2).
In addition, previous studies have shown that treat-

ment with tumor exosomes can induce TGF-b1 produc-
tion in DCs [9, 34, 68–72]. Interestingly, this phenotype
was associated with decreased expression of MHC class
II and CD86 molecules, suggesting that TDEs inhibit the
maturation of DCs [9]. TGF-b1 is known to inhibit the
activation of lymphocytes and DCs, while converting ef-
fector T cells into Treg cells [73]. Moreover, exosomal
TGF-β has also been proven to be essential for the can-
cer cell migration [74].
Along with their effect on DCs differentiation, glyco-

lytic metabolites in the TME can also impact their mat-
uration. Previously, several studies have shown that
tumor-derived lactate renders human monocytes into
less mature DCs that are deficient in IL-12 secretion and
are not able to effectively stimulate T cells [23, 44]. As
mentioned earlier, glycolytic enzymes have been identi-
fied in TDEs in substantial levels, which primarily con-
vert extracellular glucose into ATP [42]. This was clearly
mirrored by the tumor interstitial levels of ATP, which
was demonstrated to be about 1000 times higher than
those of normal tissues [75]. Since the presence of lac-
tate dehydrogenase that catalyzes the conversion of
pyruvate to lactate has been evidenced in TDEs, thus it
is assumed that TDEs contribute to increased levels of
lactate in the TME [43]. Eventually, these high levels of
lactate can restrain DCs maturation while promoting the
expansion of myeloid-derived suppressor cells (MDSCs),
which are critically important for tumor progression
[45]. There are several other studies have also confirmed
that exosome-mediated metabolic reprogramming plays
a crucial role in the intercellular communication be-
tween cancer cells and tumor associated cells. In this re-
gard, it has been identified that tumor-associated
macrophages (TAMs)-derived exosomes transfer HISLA
to breast cancer cells, to prevent HIF-1a degradation,
thus promoting aerobic glycolysis [76]. Instead, tumor

cells release lactate that increases the expression of HIF-
1α-stabilizing long noncoding RNA (HISLA) in TAMs
[76]. All these findings highlight the importance of TDEs
in metabolic reprogramming of TME, contributing to
immune escape and tumor progression (Fig. 2).

Tumor-derived exosomes alter DCs function
In addition to subverting DCs biology by altering differ-
entiation (inducing toward MDSCs) and maturation
(preventing acquisition of mature DCs features), tumors
also interfere with the function (antigen-presenting cap-
ability) of fully matured DCs [77]. Notably, in early-stage
tumors, DCs represent an immature phenotype which
can induce paramount T cell proliferation ex vivo after
being pulsed with tumor lysates, however at advanced
stages, DCs are not simply immature and exhibit a semi-
mature phenotype with compromised antigen-presenting
activities [78, 79]. Indeed, DCs in advanced tumors ex-
hibit a lower but still significant expression of MHC-II
and costimulatory CD40; however, they also coexpress
higher levels of co-inhibitory molecules (e.g. B7-H1) and
exhibit increased arginase I and IDO activity comparable
to that seen in MDSCs [21, 77]. Such DCs, called regula-
tory DCs, can result in either T cell anergy (unrespon-
siveness at the time of priming) or exhaustion
(insufficient responses due to exposure to the negative
costimulation), hence actively contribute to tumor
growth through the inhibition of protective anti-cancer
immunity [21]. How tumors induce immunosuppressive
DCs has not clearly been identified, but there are mul-
tiple factors in TME that can transform conventional
DCs with antigen-presenting capabilities into immuno-
suppressive players. Recent evidence indicates a signifi-
cant role for tumor-derived exosomes (TDE) in altering
the function of tumor-associated DCs [16]. Here, we
reviewed the literature to gather findings on the import-
ance of TDEs in impairing the function of DCs in the
tumor context.
As mentioned, the lesser expression of MHC mole-

cules on DCs in tumor bearing hosts has been assumed
to considerably responsible for their compromised func-
tion. A recent study profiled the immune cells of the pa-
tients with pancreatic cancer has revealed substantial
phenotypic changes in various immune cell populations,
especially an increased population of immunosuppres-
sive monocytes (CD14 +HLA-DRlo/neg) [31, 80, 81].
Further in vitro assessments demonstrated that the in-
teractions between pancreatic TDEs and monocytes are
responsible for HLA-DR downregulation in these cells
[80]. Based on the observations, treatment of monocytes
with TDEs can alter the STAT3 signaling pathway,
which results in HLA-DR downregulation and upregula-
tion of immunosuppressive arginase-1 expression and
reactive oxygen species production [31, 80].
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In another study, it was found that GBM-derived
extracellular vesicles do not directly inhibit T cell activa-
tion [82]. Rather than, these tumor-derived EVs induce
immunosuppressive monocytes, thereby inhibit the acti-
vation of anti-tumor T cells [82]. The expression of PD-
L1 on tumor-derived EV has been suggested to induce
this inhibitory phenotype in monocytes [82]. Since
tumor-associated DCs highly express PD-1, therefore
PD-L1 expressing TDEs may negatively affect their func-
tion via PD-L1/PD-1 axis [83–85]. Likewise, several
other studies have also shown that the exosomal PD-L1
can directly skew the function of immune cells toward
tumor-promoting phenotype [86]. In another study, it
was found that treatment of DCs with TDEs significantly
inhibited the maturation and migration of DCs [12].
These TDEs-treated DCs drastically decreased CD4 +
IFN-γ + Th1 differentiation but increased the rates of
regulatory T (Tregs) cells. Further experiments revealed
that the immunosuppressive ability of tumor exosome-
treated DCs was partially restored with PD-L1 blockade
[12]. The most recent studies indicate that exosomal PD-
L1 plays a vital role in tumor immune escape as well as in
tumor resistant to anti-PD-1/PD-L1 immunotherapy [12]

(Fig. 3). Besides of its expression on TDEs, it has also been
shown that TDEs can induce PD-L1 expression on mono-
cytes, the precursor to DCs and macrophages [87, 88]. In
this regard, exosomes from glioblastoma (GBM)-derived
stem cells (GSCs) were shown to traverse the monocyte
cytoplasm, causing a reorganization of the actin cytoskel-
eton, and skew monocytes toward the immunosuppressive
M2 phenotype, including programmed death-ligand 1
(PD-L1) expression [87]. Mass spectrometry analysis dem-
onstrated that the GDEs contain a variety of components,
including members of the signal transducer and activator
of transcription 3 (STAT3) pathways that functionally me-
diate this immunosuppressive switch [87]. Western blot
analysis revealed that upregulation of PD-L1 in GSC
exosome-treated monocytes and GBM-patient-infiltrating
CD14+ cells predominantly correlates with increased
phosphorylation of STAT3 [87]. Others have shown that
the paired expression of PD-1; PD-L1 on DCs is correlated
with the tumor progression, loss of positive costimulatory
markers (CD80, CD86, and CD40), a lack of cytokine re-
lease (IL-12, IL-10, IL-6, TNFα, and G-CSF), and contact-
dependent inhibition of T cell expansion [78, 89]. Cumu-
latively, these data indicate that TDEs are potent

Fig. 3 Tumor-derived exosomes inhibit normal function of dendritic cells. A plethora of inhibitory molecules including PD-L1, CD73, IDO
(Indoleamine 2, 3-dioxygenase), L-arginase, PGE2, TGF-β, Lipids, and components of the STAT3 activators is presented in TDEs can reprogram DCs
into immunosuppressive players and subvert their function either in priming or sustaining of anti-tumor immune responses. Exosomal PD-L1
interacts with PD-1 expressed on immune cells, including DCs and inhibits their function. IDO and L- arginase degrades tryptophan and arginine,
respectively and thereby impedes effective priming of T cells. PGE2 and TGF- β are two inhibitory molecules enriched in TDEs which can impair
antigen-presentation activity of DCs. Lipids and the STAT3 activating components can also be transported by TDEs, inducing dysfunctional DCs
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modulators of the tumor-associated immunosuppressive
microenvironment and play a significant role in DCs func-
tional abnormalities (Fig. 3).
Tumor-derived exosomes may also contribute to DCs

dysfunction through indoleamine-pyrrole 2, 3-dioxygenase
(IDO) pathway [90–92]. In a previous study, DCs cultured
with IDO+ exosomes derived from BMSCs had downreg-
ulated CD40, CD86, CD80, MHC-II, but the increased se-
cretion of anti-inflammatory cytokines compared with the
other groups [93]. It has been shown that tumor/exosomal
IDO produces kynurenine by degrading tryptophan, which
in turn can induce IDO activity in DCs by interacting with
the aryl hydrocarbon receptor (AHR) [94, 95]. This is in
line with the previous studies indicating that tumor-
associated immunosuppressive DCs are the major source
of IDO within the tumor-microenvironment promoting
malignant progression [96]. Additionally, functionally
compromised DCs can also release IDO+ exosomes,
which may further enhance immunosuppression [97].
Therefore, tumor exosomes carrying IDO can contribute
to DCs dysfunction by producing kynurenine as well as in-
ducing the expression of IDO on DCs (Fig. 3). In addition,
arginase-1 (ARG1), another key enzyme driving immuno-
suppression, was also detected in exosomes from several
cancers [98–100]. Recently, it has been found that
exosomes isolated from the ascites and plasma of ovarian
cancer patients contain ARG1 [99]. The findings demon-
strated that ARG1-containing exosomes are transported
to draining lymph nodes and taken up by dendritic cells,
leading to the inhibition of antigen-specific T-cell prolifer-
ation. It is well known that the upregulation of ARG1 ac-
tivity in TME results in a reduced availability of arginine
[101]. Previous studies clearly show that drops in the
extracellular arginine levels can induce DCs dysfunction
via downregulating the MHC-II molecules [102, 103].
Tumor exosomes and arginine restriction might also in-
duce ARG1 expression on DCs, further enhancing im-
munosuppression [24, 99]. This is in agreement with the
previous reports showing that DCs isolated from advanced
tumors exhibit significant L-arginase activity [79]. Besides,
exosomal ARG1 can also directly inhibit immune re-
sponses, since arginine is essentially needed for the activity
of effector T cells [99].
It has been shown that PGE2 and TGF-β, both

present in TDEs, are also critically involved in the ab-
rogated function of tumor-associated DCs via the up-
regulation of ARG1 activity, IDO, and co-inhibitory
molecule B7-H1 and B7-DC, as well as the IL-10 pro-
duction [33, 104]. In addition, exosomal PGE2 and
TGF-β were clearly demonstrated to inhibit DCs
function through the induction of tolerogenic media-
tors, two ecto-enzymes CD39 and CD73, that act se-
quentially to generate anti-inflammatory extracellular
adenosine [16]. In a recent study, it was found that

exosomes derived from prostate cancer cells contain
PGE2 which can induce CD73 expression on DCs
and suppress their function [16]. CD73 was proven to
pair with CD39 that is consistently expressed on DCs,
and converts extracellular ATP into adenosine. The
subsequent engagement of adenosine with the adeno-
sine A2A receptor (A2AR), expressed on DCs and ef-
fectors T cells, could robustly play against anti-tumor
immunity [105] (Fig. 3).
Other tumor-microenvironment components can also

impair tumor-associated antigen presentation capability
of DCs. For instance, the higher levels of lipid peroxida-
tion can increase endoplasmic reticulum stress of DCs
in tumor-microenvironment, which in turn impair the
function DCs by increasing lipid accumulation [106]. In-
deed, it has been shown that DCs with a higher load of
lipids have the defective ability in processing and cross-
presentation of exogenous antigens [106, 107]. More-
over, the intracellular lipid accumulation can inhibit the
effective trafficking of MHC-I-peptide complexes to the
cell surface [106, 108]. Recently, it has been identified
that TDEs contribute to DCs dysfunction by transferring
fatty acids [109]. Based on the evidence, delivering fatty
acids by TDEs could induce the expression of peroxi-
some proliferator-activated receptor (PPAR) in DCs,
which in turn increase both the biogenesis and oxidation
of fatty acids [109]. The excess amount of intracellular
lipid droplets/ fatty acid oxidation-by products can result
in dysfunctional DCs via increased mitochondrial oxida-
tive phosphorylation [109]. Therefore, based on these
findings, TDEs can induce metabolic reprogramming in
DCs either by transferring or inducing the production of
lipids (Table 1 and Fig. 3).

Lessons learned from TDEs-mediated DCs dysfunction
In spite of containing a variety of immunosuppressive
biomolecules, TDEs are also rich in tumor antigens and
could provoke anti-tumor immunity [110]. Previously, it
has been demonstrated that DCs could uptake TDEs,
process their antigens and present to CD4 and CD8
positive T cells via MHCII and MHCI, respectively, in-
ducing antigen-specific CTL responses [110]. These
findings inspired numerous studies to investigate the po-
tential utility of TDEs (isolated from patients’ plasma or
tumor cell cultures) as tumor antigen sources in DC-
based vaccination for cancer prevention and treatment
[15, 110, 111]. There is now a great deal of evidence that
shows greater anti-tumor activity for TDEs-pulsed DCs
in comparison to tumor lysate-loaded DCs, giving rise to
a consensus that DCs loaded with TDEs could serve as a
novel promising approach for tumor immunotherapy
[112]. However, the immunoinhibitory content of TDEs
that causes DCs to become dysfunctional, as discussed
in this review, has largely been overlooked in TDEs-
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loaded DC vaccine strategies [14]. It might be expected
that immunosuppressive cargo of TDEs would affect the
therapeutic potential of TDEs-loaded DCs. This idea is
supported by the findings showing that the engineered
exosomes lacking inhibitory molecules can induce more
effective anti-tumor responses in DC-based vaccine de-
sign [113, 114]. For instance, it has been demonstrated
that DCs loaded with TGF-b1-depleted exosomes induce
greater anti-tumor CTLs compared to DCs pulsed with
TGF-b1-expressing exosomes [113, 115]. In another
study, it was also found that treatment of DCs with
TDEs loaded with interleukin 12 (IL-12) or deprived of
TGF-b1 could strongly support induction of anti-tumor
immune responses compared to unmodified TDEs [116].
This shows that engineering exosomes to carry a cus-
tomized cargo can be helpful in maximizing the thera-
peutic benefits of TDEs-loaded DC vaccines and should
be carefully considered in future studies [114].
Furthermore, since tumors constantly release exo-

somes into the surrounding environment as well as into
the circulation, these virus-sized vesicles are very likely
to also interfere with the immune therapies in vivo, in-
cluding DC vaccines [117, 118]. This becomes more evi-
dent, as the immunosuppressive cargo of TDEs has been
evidenced to abolish the efficacy of adaptive NK92 cell
therapy in acute myeloid leukemia patients [117].

Circulating TDEs have also been proved to interfere with
the therapeutic effects of monoclonal anti-HER2, −CD20
and -PD-1/PD-L1 antibodies [119–123]. Moreover,
tumor exosomes have widely been reported to mediate
resistance to common chemotherapies [86, 117, 124–
126]. However, strikingly, targeting exosomal inhibitory
biomolecules or blockade of exosome release from can-
cer cells could strongly induce anti-tumor immunity and
improve the anti-cancer effects of chemotherapeutic
agents [118, 120, 127–130]. These data suggest that a
strategy for targeting circulating tumor exosomes could
add to the benefits of chemo- and immunotherapeutic
interventions, possibly including DC-based therapies
[118] (Fig. 4).

Advances in targetting tumor-derived exosomes
Due to the pivotal role that TDEs play in multiple as-
pects of tumor development and growth, such as pro-
liferation, angiogenesis, metastatic niche formation
and immune escape, a strong interest has emerged in
recent years to selectively inhibit the generation/re-
lease of tumor exosomes as an adjunctive therapy for
cancer [120, 127, 128]. The early research on exo-
some formation showed that these particles are highly
enriched in sphingolipid ceramide and their release is
significantly reduced in the presence of GW4869, a

Table 1 The content of tumor-derived exosomes (TDEs) and their effects on developmental stages of DCs

Exosome content Mechanism of Action Ref

Inhibition of DCs Differentiation

Cox-2, PGE2, TGF-b1, IL-6, HSP-70,
and HSP-72

Promoting the polarization of myeloid-derived suppressor cells (MDSCs), mainly through
the STAT-3 pathway

[24–29, 31–33,
35–38]

Glycolytic Enzymes Increasing ATP and lactic acid levels and enhancing MDSCs population [18, 42–45]

HLA-G Blocking monocyte-derived DCs differentiation [39]

Inhibition of DCs Maturation

Galectin-9 and TIM-3 Interacting with TIM-3 on DCs and reducing nucleic acid sensing [51–53]

CD-47 Reducing phagocytosis by interacting with SIRP-a on DCs [54–60]

S100A9 Downregulating CD83, CD86, IL-12 and IL-15 expression levels [63–67]

TGF-b1 Induction of TGF-b1 secretion by DCs [9, 68, 73, 74]

Lactate dehydrogenase Increasing ATP and lactate levels in tumor microenvironment [43–45, 75, 76]

Inhibition of DCs Function

STAT3 activators Reducing the levels of MHC and CD83 and CD86 molecules [31, 34, 80]

PD-L1 Inducing PD-1 expression and transferring of negative signals [12, 82–88]

IDO - Decreasing the levels of CD40, CD83, CD86 and MHC molecules
- Degrading tryptophan into kynurenine
- Kynurenine-meditated increase of IDO expression on DCs

[93, 95–97]

L-arginase (ARG1) -Impedes the DCs-mediated T cells priming in regional lymph nodes
- Reduces arginine level in tumor microenvironment, resulting in lower expression of
MHC molecules

[24, 98–100]

PGE and TGF-b1 Increasing CD73 expression on DCs, resulting in increased levels of inhibitory adenosine
in tumor site

[16, 24, 104, 105]

Lipids Accumulating lipids in DCs, interfering with their antigen-presentation function [106–109]
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small molecule that inhibits neutral sphingomyeli-
nase2 (nSMase2) [131, 132]. Further studies demon-
strated that in addition to nSMase, ras-related RAB
proteins are also important players of exosome
biogenesis and knocking-down of RAB27A and
RAB27B could significantly inhibit exosome shedding
[133–135]. These findings provided preliminary in-
sights into the underlying mechanisms of exosomes
generation and unveiled potential targets for inhibit-
ing their release. Over the past decade, tremendous
efforts have been devoted to explore compounds cap-
able of inhibiting nSMase and RAB27A expression as
a possible route to block exosome secretion [135]. As
a result, manumycin A [136], spiroepoxide [137, 138],
cambinol [139], scyphostatin [140, 141], and DPTIP
[142] were found to decrease exosome production by
downregulating nSMase expression. More recently, re-
searchers have used a high-throughput screening
(HTS) technique to identify currently exited com-
pounds with drug repositioning potential for exosome
inhibition [143]. A total number of 4580 pharmaco-
logically active compounds from the LOPAC library
and the NPC library were examined and only tipifar-
nib, neticonazole, climbazole, ketoconazole, nexin-
hib20, nexinhib4, were found as potent exosome
inhibitors [143]. Among these compounds, it has been

demonstrated that nexinhib20 and nexinhib4, inhibi-
tors of neutrophil exocytosis, can suppress exosome
biogenesis by selective inhibition of RAB27A [144],
however, tipifarnib, neticonazole, climbazole, and ke-
toconazole were shown to decrease exosome secretion
by inhibiting RAB27A, Alix and nSMase2 [143]. Of
note, the therapeutic value of tipifarnib in the adju-
vant setting is under investigation in several clinical
trials, and ketoconazole has currently been approved
for the treatment of prostate cancer patients by the
US Food and Drug Administration (FDA) [145–148].
Several other currently available drugs have also been
identified with potential exosome inhibiting effects.
Sulphisoxazole [149], ketotifen [150], cannabidiol
[151, 152], pantoprazole [153, 154], esomeprazole
[154], and imipramine [155] have been reported to
exert potent blocking effects on exosome production
with anti-cancer activity. Others have shown that
chloramidine [155], bisindolylmaleimide-I [155], and
the vitamin B5 derivative pantethine [156] can also
inhibit the secretion of tumor exosomes. Dasitinib, a
dual BCR/ABL and Src family tyrosine kinase inhibi-
tor, was shown to prevent exosome release while pro-
moting apoptosis in K562R (IMT) cells [157].
Recently, a synthetic peptide derived from the secre-
tion modification region (SMR) of HIV-1 Nef, which

Fig. 4 Combining targeted tumor exosome inhibition or removal with exiting chemo- and immunotherapies. Tumor exosomes induce resistance
to chemotherapies and counteract beneficial effects of immunotherapies including monoclonal antibodies (mAbs), adoptive transfer of NK-92
cells and possibly TDE-loaded DCs. Adjunctive inhibition or removal of TDEs may add to the therapeutic benefits of currently available chemo-
and immunotherapies and could improve tumor regression
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carried PEG on the N-terminus and a Clusterin
(Clu)-binding peptide on the C-terminus, was re-
ported to inhibit metastasis and angiogenesis by caus-
ing a decrease in exosome release [158]. WEB2086,
an antagonist of platelet-activating factor receptor
(PAFR), was also proven to inhibit exosome release
[159]. Dimethyl amiloride, a drug used to treat high
blood pressure, has also been reported to inhibit exo-
some formation [36]. Additionally, anti-CD9 and anti
CD63 antibodies as well as a hemofiltration device
known as the Aethlon ADAPT™ (adaptive dialysis-like
affinity platform technology) were shown to be useful
in removing exosomes from circulation [130, 160].
By advances in our understanding of the basic biology

of exosome formation and release, a number of new tar-
gets have also been identified. It has been shown that
the gene silencing of tumor susceptibility gene 101
(TSG101), a member of Vps protein family which in-
volves in exosome trafficking, inhibits exosome produc-
tion in colon cancer cells [161]. Annexin A1 (ANXA1)
has also been documented to play an important role in
inward vesiculation and its suppression was associated
with reduced exosome secretion in pancreatic cancer
cells [162]. The proline-rich Akt substrate of 40 kDa
(PRAS40) has also been reported to regulate exosome
secretion in breast and lung cancer cells [163]. Others
have shown that the blocking of protease-activated re-
ceptor (PAR)-2, which binds to the tissue factor/factor
VIIa, suppresses the secretion of TF-positive exosomes
from pancreatic cancer cells [164].

Future perspectives and concluding remarks
The literature reviewed in this paper indicates that TDEs
impair differentiation, maturation and function of DCs
to favor immune escape and tumor outgrowth. Although
several well-defined, proven mechanisms underlying the
inhibitory effects of tumor exosomes on DCs biology
were discussed in this review, but TDEs may also alter
DCs behavior by a number of speculative mechanisms.
For example, blockade of DCs differentiation has pri-
marily been attributed to the presence of tumor-derived
vascular endothelial growth factor (VEGF), and its levels
were negatively correlated with the number of DCs in
the circulation and TME in human cancers [18, 20, 21,
26, 165–172]. Tumor-derived exosomes were also shown
to induce the release of VEGF by transferring miRNA-
21 into recipient cells, thus leading to increased VEGF
levels within the tumor [173–175]. More recent findings
also show that TDEs harbor an active isoform of VEGF,
which is associated with the tumor outgrowth and resist-
ance to common monoclonal antibody (mAb) therapies
[176]. Besides, tumor cells also secrete excessive
amounts of the gangliosides GD2 and GM3 that inhibit
the differentiation of DCs from CD34+ as well as

monocytic precursors, and induce apoptosis of
monocyte-derived DCs [177–179]. These sialic acid-
containing glycosphingolipids were also shown to be
shed from tumors via exosomes and can actively sup-
press immune cells [26, 180]. Therefore, it can be postu-
lated that several other exosomal biomolecules,
including but not limited to VEGF, miRNA-21 and gan-
gliosides, might play a role in the impaired differenti-
ation of DCs in tumor context; however, their role has
yet to be investigated. In addition, tumor exosomes were
also reported to contain notable amounts of IL-10 [33,
74, 81, 181, 182]. The high levels of IL-10 were shown to
inhibit DCs maturation by downmodulating the expres-
sion of MHC-I and costimulatory molecules, blocking
the initiation of T cell responses [7, 21, 183, 184]. How-
ever, there is no evidence thus far that IL-10 plays a role
in TDEs-mediated DCs defects. Future studies can shed
light on the link between the above-mentioned exosomal
markers and DCs abnormalities in cancer. Additionally,
since different subpopulations of DCs exhibit distinct
phenotypic characteristics and functional potential, thus
it will be very important in future research to focus
more attention on the effects of TDEs on DCs sub-
groups. Also, as discussed later in this review, great ef-
forts have been made so far to target exosomes or
exosomal markers to inhibit tumor progression and im-
prove anti-tumor immunity. However, regardless of sig-
nificant progress has been made in recent years in the
discovery of exosomes inhibitors; it is still in its infancy
and the therapeutic value of those inhibitors as adjunct-
ive therapy for cancer has not yet been fully validated.
Most of the compounds tested for exosome inhibition
were highly cytotoxic and did not show selectivity to in-
hibit tumor exosomes, and thus may disrupt intercellular
communication by inhibiting exosome secretion from
non-tumor cells, leading to unwanted adverse side ef-
fects. Therefore, there are still significant challenges
ahead to identify novel compounds and viable targets for
selective inhibition or removal of tumor exosomes. In
summary, growing evidence supports the notion that
tumor-derived exosomes are potential suppressors of
immune cells, including DCs, and targeting these extra-
cellular vesicles may provide a new avenue for the better
treatment of cancers.
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