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Abstract 

N6-methyladenosine (m6A) is a prevalent internal modification in eukaryotic RNAs regulated by the so-called “writers”, 
“erasers”, and “readers”. m6A has been demonstrated to exert critical molecular functions in modulating RNA matura-
tion, localization, translation and metabolism, thus playing an essential role in cellular, developmental, and disease 
processes. Circular RNAs (circRNAs) are a class of non-coding RNAs with covalently closed single-stranded structures 
generated by back-splicing. CircRNAs also participate in physiological and pathological processes through unique 
mechanisms. Despite their discovery several years ago, m6A and circRNAs has drawn increased research interest due 
to advances in molecular biology techniques these years. Recently, several scholars have investigated the crosstalk 
between m6A and circRNAs. In this review, we provide an overview of the current knowledge of m6A and circRNAs, as 
well as summarize the crosstalk between these molecules based on existing research. In addition, we present some 
suggestions for future research perspectives.
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Background
RNA modifications (e.g., N6-methyladenosine [m6A], 
5-methylcytosine, pseudouridine, N4-acetylcytidine, 
ribose methylations, and N1-methylguanosine), have 
recently emerged as vital post-transcriptional epige-
netic modulators of gene expression in eukaryotes [1, 2]. 
Among these RNA modifications, m6A represents the 
most common and well-studied to date. m6A is a revers-
ible modification that methylated adenosine at the N6 
position of almost every type of RNA molecule, includ-
ing mRNAs, small nuclear RNAs, ribosomal RNAs, and 
non-coding RNAs [1–3]. m6A was first discovered in the 

1970s and developed rapidly during the past few years 
due to the advances in high-throughput m6A sequenc-
ing and methylated RNA m6A immunoprecipitation [4]. 
Moreover, m6A has been demonstrated to exert critical 
molecular functions in modulating RNA maturation, 
localization, translation, and metabolism. m6A dynami-
cally exists and is involved in a variety of physiological 
and pathological processes, including growth, develop-
ment, aging and diseases [4–6].

Circular RNAs (circRNAs) are a class of endogenous 
RNAs with covalently closed single-stranded struc-
tures also present in eukaryotes [7, 8]. Most circRNAs 
are non-coding RNAs while a proportion of cytoplas-
mic circRNAs have the coding potential to be trans-
lated into peptides [9, 10]. These molecules were also 
discovered several years ago, but has recently attracted 
the attention of researchers due to the advances in high-
throughput RNA sequencing and bioinformatics [11]. 
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Similar to other types of RNAs, circRNAs are involved 
in the maintenance of the normal physiological function 
of the human body, as well as the occurrence and devel-
opment of a variety of human diseases [11–13]. While 
distinct from other RNA molecules, circRNAs possess 
unique biogenesis, biology, and characterization. There-
fore, they may present peculiarities in response to RNA 
modifications.

Recently, some scholars have combined these two 
recent hot topics to investigate the crosstalk between 
them. In this review, we provide an overview of the cur-
rent knowledge of m6A as well as circRNAs, and sum-
marize the crosstalk between m6A modification and 
circular RNAs based on existing research. In addition, we 
have found that many questions still remain unanswered 
in this area and present some suggestions for future 
research perspectives.

RNA m6A modification
Similar to DNA methylation, RNA m6A methylation is 
catalyzed and recognized by corresponding enzymes, 
methyltransferases- “writers”, demethylases- “erasers” 

and “readers”. Subsequently, these modified RNAs will 
present with a different fate in maturation, localization, 
translation and metabolism, thereby influencing vari-
ous molecular cellular processes. The specific details are 
described below and a summary is presented in Fig. 1.

Participants of m6A modification: writers, erasers, 
and readers
m6A writers
The m6A is installed by the multicomponent m6A meth-
yltransferases complex (MTC), known as “writers”. The 
currently reported writers include methyltransferase-
like 3 (METTL3), methyltransferase-like 14 (METTL14), 
methyltransferase-like 5 (METTL5), methyltransferase-
like 16 (METTL16), Cbl proto-oncogene-like 1 (HAKAI), 
Wilms’ tumor 1-associating protein (WTAP), Vir Like 
M6A Methyltransferase Associated (VIRMA), RNA 
Binding Motif Protein 15/15B (RBM15/15B), Zinc Finger 
CCCH-Type Containing 4 (ZCCHC4), and Zinc Finger 
CCCH-Type Containing 13 (ZC3H13). These enzymes 
perform their respective duties and jointly complete 
the “writing” task. According to current knowledge, 

Fig. 1  Overview of m6A modification. m6A modification is installed by the multicomponent m6A methyltransferases complex (writers) and 
removed by demethylases (erasers). The m6A modification is then identified by m6A readers which determine the fate of these RNAs and involved 
in various cellular processes. In the nucleus, m6A are identified by nuclear readers and modulates RNA transcription (transcription activation and 
termination), splicing (mRNAs, miRNAs, lncRNAs and circRNAs maturing) and structure (influence readers binding and splicing). Mature RNAs 
modified by m6A in the nucleus are recognized by readers, which subsequently mediate subcellular localization. In the cytoplasm, m6A are 
identified by cytoplasmic readers and modulates RNA stability (enhance stability or facilitate degradation), translation (promote translation via 
multiple mechanisms), and binding capacity (RNA-RBP interaction and RNA-RNA interaction)
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METTL3, METTL5, and METTL16 function as catalytic 
cores in the complex which catalyze m6A modification 
via methyltransferase domains [3–5, 14–16]. Other com-
ponents typically play auxiliary roles, such as structural 
stabilization, reorganization of special RNA sites, and 
directing MTC location [3–5, 14–16].

m6A erasers
The m6A installed by writers can be removed by dem-
ethylases, or so-called “erasers”, which include fat mass 
and obesity-associated protein (FTO) and AlkB homolog 
5 (ALKBH5) [14–16]. These two demethylases are local-
ized in nuclear speckles and can oxidatively eliminate 
both DNA and RNA methylation, with a particularity 
for m6A methylation [15–17]. The identification of m6A 
demethylation provides evidence for the possible revers-
ibility of the m6A modification.

m6A readers
To exert their biological functions, the m6A modifica-
tions determined by m6A writers and erasers must be 
identified by m6A readers. The currently reported read-
ers include the YT521-B homology (YTH) domain fam-
ily proteins (YTHDF1, YTHDF2, and YTHDF3), YTH 
domain containing proteins (YTHDC1 and YTHDC2), 
heterogeneous nuclear ribonucleoprotein (HNRNPC, 
HNRNPG, and HNRNPA2B1), insulin-like growth fac-
tor 2 mRNA-binding proteins (IGF2BP1, IGF2BP2, 
IGF2BP3), eukaryotic translation initiation factor 3 
(EIF3), proline rich coiled-coil 2A (PRRC2A), and 
staphylococcal nuclease and tudor domain containing 1 
(SND1). These RNA binding proteins (RBPs) have con-
served m6A-binding domains that can specifically recog-
nize m6A modifications. RBPs bind to m6A methylated 
RNAs and determine the fate of these RNAs, thus regu-
lating various cellular processes such as transcription, 
splicing and maturing, exportation, translation, decay 
and others [3–5, 14–16]. Therefore, the m6A readers rep-
resent intermediaries for RNA m6A modification and dif-
ferent RNA fates.

A more comprehensive summary than previous reviews 
on the classification and functions of m6A writers, eras-
ers, and readers is presented in Table  1. It appears that 
compared with a simple m6A installation and elimination 
function of writers and erasers, the roles of readers are 
more complicated and diverse, which is an area of keen 
research interest.

Biological functions of m6A modification
The modulation of m6A methylation on RNAs begins 
during transcription and is largely dependent on the 
subcellular localization of writers, erasers, and readers. 
The writers are primarily localized in the nucleus, so 

the writing processes predominantly occur during the 
nuclear phase [14–18]. The eraser ALKBH5 mainly exists 
and functions as a demethylase in the nucleus, and the 
eraser FTO exerts demethylase activity both in nucleus 
and cytoplasm [14–18, 54]. Thus, the erasing processes 
may occur in the nucleus and cytoplasm. Some readers 
are localized and “read” m6A in the nucleus, which may 
influence nuclear processes, such as transcription and 
RNA splicing. In addition, some readers are able to assist 
with m6A-RNAs export from the nucleus to the cyto-
plasm. Readers in the cytoplasm may regulate cytosolic 
processes, such as translation and degradation.

m6A modulates RNA transcription, splicing, and structure
RNA m6A modification is a post-transcriptional regula-
tion which appears not to be related to transcription; 
however, a recent study demonstrated that m6A modifi-
cation on chromosome-associated regulatory RNAs (car-
RNAs), including promoter-associated RNAs, enhancer 
RNAs, and repeat RNAs, can induce carRNA decay by 
YTHDC1 and impact the open chromatin state and 
downstream transcription [36]. Moreover, RNA m6A 
modification play a critical role in transcription termi-
nation by facilitating the formation of co-transcriptional 
R-loops to decrease the readthrough activity of Pol II 
[55]. Reports have confirmed that m6A modification on 
primary miRNAs (pri-miRNAs) promotes the recogni-
tion and processing by the microRNA microprocessor 
complex protein, DGCR8, thereby enhancing miRNA 
maturation [45, 56]. The regulation of m6A on pre-mRNA 
splicing has been validated in Drosophila [57], whereas 
the precise regulation pattern remains largely unknown 
in mammals. Nevertheless, some efforts have been made 
to consummate the pathways through which m6A modu-
lates pre-mRNA splicing in mammals. For example, the 
m6A reader, HNRNPG, may use Arg-Gly-Gly motifs to 
co-transcriptionally interact with RNA polymerase II and 
m6A-modified nascent pre-mRNA to modulate alterna-
tive splicing [44]. Additionally, YTHDC1 can recruit and 
promote pre-mRNA splicing factors to enter the binding 
regions of targeted mRNAs to modulate mRNA splicing 
[33]. In addition, the m6A modification on U2 and U6 
snRNAs may influence the splicing of specific pre-mRNA 
transcripts [58, 59]. Evidence also shows that m6A can 
alter RNA structures to affect RNA-protein interactions 
in cells. For instance, m6A alters the local structure in 
mRNA and lncRNA and thereby influences the binding 
of HNRNPC to mediate pre-mRNA processing [42]. m6A 
located near splice sites in nascent pre-mRNA modulates 
HNRNPG binding, which influences RNAPII occupancy 
patterns and promotes HNRNPG-mediated alternative 
splicing [43, 44].
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m6A modulates RNA subcellular localization
Mature RNAs modified by m6A in the nucleus are rec-
ognized by readers, which subsequently mediate sub-
cellular localization. In general, nuclear readers (e.g., 
YTHDC1 and HNRNPA2B1) can identify m6A-RNAs 
(e.g., mRNAs and circRNAs), and accelerate their 
exportation from the nucleus to the cytoplasm [34, 
45, 60]. However, for some RNAs, m6A modification 
may detain them within the nucleus. For example, m6A 
modification of lncRNA RP11 can increase its accu-
mulation in the nucleus and on chromatin, which may 
be due to its interaction with HNRNPA2B1 [61]. Inter-
estingly, several RNAs without m6A modification can 
still be exported from the nucleus, indicating that the 
m6A is a facilitator but not an indispensable factor for 
translocation [14].

m6A modulates RNA stability, translation, and binding 
capacity
RNA exported to the cytoplasm may exert their biologi-
cal functions or be degraded, and m6A modification can 
impact these processes via multiple cytoplasmic read-
ers. Readers mediate the degradation of m6A-mRNAs, 
including YTHDF1, YTHDF2, YTHDF3, and YTHDC2, 
and readers enhance m6A-mRNA stability, including 
IGF2BPs, PRRC2A, and SND1 (Table 1) [29–32, 39–41, 
47, 52, 53]. Moreover, these readers may regulate RNA 
stability through diverse mechanisms. For example, the 
carboxy-terminal domain of YTHDF2 selectively inter-
acts with m6A-mRNAs, whereas the amino-terminal 
domain mediates the transposition of the YTHDF2-
mRNA complex from the translatable pool to mRNA 
decay sites (e.g., processing bodies) [62]. IGF2BPs 

Table 1  Writers, erasers and readers of RNA m6A modification

Category Factors Roles Refs

Writers METTL3 m6A catalytic subunit [14, 15]

METTL14 Forms heterodimer with METTL3 to stabilize METTL3 and assist recognizing the subtract [14, 18]

METTL16 m6A catalytic subunit [19]

METTL5 Ribosome 18S m6A methyltransferase [20, 21]

TRMT112 Forms heterodimeric complex with METTL5 as a methyltransferase activator to stabilize METTL5 [21]

ZCCHC4 Ribosome 28S m6A methyltransferase [22, 23]

HAKAI Essential member of the MTC [24]

WTAP Promotse m6A methyltransferase activity and localization in nuclear speckles [25]

VIRMA Binds the MTC and recruit it to specific RNA region [26]

RBM15/15B Binds the MTC and recruit it to specific RNA site [27]

ZC3H13 Promotes nuclear localization of MTC to modulate m6A in the nucleus [28]

Erasers FTO Eliminates m6A by oxidation [14–18]

ALKBH5 Eliminates m6A by oxidation [14–18]

Readers YTHDF1 Facilitates the ribosome assembly of m6A-mRNAs and interacts with the initiation factor to promote translation; 
cooperates with YTHDF2 and YTHDF3 to mediate degradation of m6A-mRNAs

[29, 30]

YTHDF2 Reduces m6A-mRNAs stability; stabilize m6A-mRNAs specifically in cancer stem cells; cooperates with YTHDF1 and 
YTHDF3 to mediate degradation of m6A-mRNAs

[29–31]

YTHDF3 Cooperates with YTHDF1 and YTHDF2 to mediate degradation of m6A-mRNAs [30, 32]

YTHDC1 Promotes RNA splicing and translocation; facilitates the decay of m6A-modified chromosome-associated regula-
tory RNAs; together with its target m6A-RNAs to regulate chromatin modification and retrotransposon repression; 
regulate histone methylation

[33–38]

YTHDC2 Facilitates the translation and decrease the abundance of m6A-RNAs; has 3′-5′ RNA helicase activity and decrease 
the stability of m6A-mRNAs

[39–41]

HNRNPC/G Responsible for pre-mRNA processing and affect the alternative splicing of target m6A-mRNAs [42–44]

HNRNPA2B1 Binds to m6A-containing pri-miRNAs to promote pri-miRNA processing; may regulate mRNA splicing by binding to 
m6A-containing pre-mRNAs; facilitates m6A modification and nucleocytoplasmic trafficking of mRNAs

[45, 46]

IGF2BP1/2/3 Regulates m6A-RNAs stability, subcellular localization and translation [47–49]

EIF3 Facilitates translation of m6A-mRNAs by recruiting the 43S complex [50, 51]

PRRC2A Enhances m6A-mRNAs stability [52]

SND1 Enhances m6A-RNAs stability [53]
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probably recruit RNA stabilizers, such as ELAV like RNA 
binding protein 1 (ELAVL1 or HuR), matrin 3 (MATR3), 
and poly(A) binding protein cytoplasmic 1 (PABPC1), 
to maintain the stability of their target m6A-RNAs [47]. 
Numerous studies have demonstrated that m6A can reg-
ulate translation with the assistance of readers, includ-
ing YTHDF1, YTHDF2, YTHDF3, YTHDC2, IGF2BPs, 
and EIF3 [29–32, 39–41, 47–49], which involves several 
distinct mechanisms. For example, YTHDF1 can facili-
tate the ribosome assembly of m6A-mRNAs and interact 
with the initiation factor to promote translation [29]. In 
the absence of the cap-binding factor eIF4E, EIF3 can 
directly bind to the m6A in the 5′ untranslated region 
(UTR) and recruit the 43S complex to initiate translation 
[50]. METTL3 directly binds to the eukaryotic translation 
initiation factor 3 subunit h (eIF3h) and presumably pro-
motes translation through ribosome recycling [63]. Pro-
moter-bound METTL3 induces m6A in the coding region 
of mRNA to enhance translation by relieving ribosome 
stalling [64]. Moreover, m6A on 18S and 28S ribosomal 
RNA also play critical roles in the maintenance of riboso-
mal translation dynamics [20, 22]. Apart from the influ-
ence of the RNA-RBP interaction described above, m6A 
may also be indispensable for some RNA-RNA interac-
tions. For example, the sufficient enrichment of the m6A 
modification on linc1281 is required for the interaction 
between linc1281 with miRNAs [65], and the m6A modi-
fied 353–357 region in the YAP 3’UTR was found to be 
critical for miR-582-3p targeting [66].

CircRNAs
In contrast to other RNA molecules, circRNAs have a 
unique circular structure, which requires a unique bio-
genesis process. Moreover, this stable structure may 
endow them with distinctive cellular functions, as well as 
unique approach to degradation. The associated details 
are described below and a summary is presented in Fig. 2.

Biogenesis of circRNAs
Similar to mRNA maturation, the biogenesis of circRNAs 
should also undergo processes, including the transcrip-
tion and splicing of pre-mRNAs [7, 8, 11]. Therefore, the 
factors that regulate transcription (e.g., epigenetic modi-
fications and transcription factors) may influence the 
generation of circRNAs [7, 8, 11]. Distinguished from the 
canonical splicing of mRNAs, the alternative splicing of 
circRNAs represents a unique mode that competes with 
mRNA splicing. Instead of the 5′-capping, 3′-polyade-
nylation and introns removing events of mRNA matura-
tion, a downstream 5′-splice site and a 3′-splice site are 
connected to form a covalently closed single-stranded 
structure in circRNA splicing [7, 8, 11–13]. There are 

several acknowledged mechanisms that can be used to 
interpret the circularization of circRNAs [7, 13, 67]. The 
first is intron pairing-driven circularization, in which the 
flanking of inverted repeat elements form RNA double 
strands through base-pairing. Another model is RBP-
mediated circularization, in which the RBPs bind to 
the upstream and downstream flanking introns to form 
dimers. The third is lariat-driven circularization, which 
is mediated by the lariat structures that form in the 
exon-skipping events during linear splicing or intronic 
lariats that escape from the debranching of canonical 
linear splicing. These regulatory modes serve to bring 
the downstream splice-donor sites into close proximity 
with the upstream splice-acceptor site subject to alter-
native splicing. Based on the involved splicing and the 
genomic elements, three types of circRNAs are gener-
ated: 1) exonic circRNAs (EcRNAs), which are composed 
by one or more exons; 2) exon-intron circRNAs (EIcR-
NAs) that contain both exon and intron components; 
and 3) intronic circRNAs (ciRNAs), which consist of only 
introns [11, 68, 69].

Exportation and distribution of circRNAs
As described above, the biogenesis of circRNAs occurs 
in the nucleus, and are then exported to the cytoplasm 
or detained in the nucleus. In general, most circRNAs 
are exported into the cytoplasm and the vast majority of 
cytoplasmic circRNAs are EcRNAs without introns [7, 
12, 13]. Similar to many linear RNAs, circRNAs involv-
ing intron elements (e.g., EIcRNAs and ciRNAs) are 
usually sequestered in the nucleus [7, 12, 13]. There are 
some underlying mechanisms may interpret the expor-
tation and distribution of circRNAs. The first and the 
most recently concerned is m6A-mediated circRNA 
translocation, which will be discussed in detail below. 
Another mechanism is the length-dependent evolution-
arily conserved pathway which involves the association 
of circRNA lengths with the conserved proteins, UAP56 
and URH49 [70]. In addition, since circRNAs are also 
enriched and stable in exosomes, they also widely exist in 
extracellular components [71, 72].

Biological functions of circRNAs
Based on the unique characteristics and distribution, 
circRNAs may exert various biological functions. Cir-
cRNAs enriched in the nucleus are more likely to mod-
ulate transcription and splicing and several underlying 
mechanisms have been reported. For instance, circ-
SCMH1 may interact with transcription factor methyl 
CpG binding protein 2 (MeCP2) to restrain its tran-
scriptional activity [73]. circMRPS35 can recruit the 
histone acetyltransferase, KAT7, to elicit the acetyla-
tion of H4K5 in the promoters and directly bind to the 
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promoters of FOXO1 and FOXO3a genes to activate the 
transcription [74]. CircRNAs derived from exon 6 of 
the SEP3 gene in Arabidopsis can bind to its cognate 
DNA locus to form an RNA:DNA hybrid, pausing tran-
scription and exon 6 skipping in the alternative splicing 
of SEP3 pre-mRNA [75].

Compared with nuclear circRNAs, cytoplasmic circR-
NAs are better acquainted. The most frequently reported 
function of circRNAs is their capacity to act as miRNA 
sponges. Such sponging refers to the manner by which 
circRNAs impair miRNA activity through sequestra-
tion in a competing endogenous RNA (ceRNA) manner, 
thereby raising the expression of miRNA target genes 
[76, 77]. Compared with this explicit inhibitory role on 
miRNA, circRNAs exhibit diverse binding effects on 
various proteins [78–81]. For example, circRNAs may 
not only recruit RBPs to stabilize and translate mRNAs, 
but also competitively bind to these RBPs to inhibit 
translation and degradation [62, 82, 83]. In addition, the 

interaction between RBPs and circRNAs may also influ-
ence the functionality and induce degradation through 
the ubiquitination of RBPs [84, 85].

CircRNAs are once considered as non-coding RNAs, 
however, recent studies have demonstrated that some 
cytoplasmic circRNAs carrying an initiation codon and 
putative open reading frames can be translated into 
peptides. Although lacking the traditional initiation ele-
ments (e.g., 5′ and 3’untranslated regions), circRNAs 
carrying an internal ribosome entry site (IRES) may 
undergo translation in a cap-independent manner [9, 
86]. In addition, some circRNAs possess m6A and trans-
lation initiation sites may also go through m6A-driven 
translation with the assistance of the initiation factor, 
eIF4G2, and m6A reader, YTHDF3 [87]. Due to the same 
ORF components, several peptides translated by cir-
cRNAs are closely related to the proteins translated by 
their corresponding mRNAs. These peptides may act as 
substitutes to protect intact proteins from degradation 

Fig. 2  Summary of circRNA biology. Both circRNAs and mRNAs are originated from pre-mRNAs transcribed from genomic DNA which are regulated 
by transcriptional regulators. Distinguished from mRNA maturation (5′-capping, 3′-polyadenylation and introns removing), circRNA maturation 
go through various back-splicing processes which competes with the traditional mRNA splicing. CircRNAs matured in the nucleus may stay in 
the nucleus (EIcRNAs and ciRNAs with intron elements) or export to the cytoplasm (EcRNAs without introns). CircRNAs stay in the nucleus may 
participate in nuclear processes such as transcriptional regulation. CircRNAs export to the cytoplasm are involved in cytoplasmic processes such as 
miRNA sponging, RBP binding and translation. Some circRNAs are also enriched and stable in exosomes and secreted to extracellular components. 
All the circRNAs will eventually be degraded via a variety of mechanisms
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or function as competitors to compete for regulators 
with intact proteins [88–90]. As proteins, while they may 
also play other functions [91–93], there are few relevant 
published studies, and further explorations remain to be 
performed.

Based on abundance and stability, circRNAs located in 
exosomes can be detected in the circulation and urine. 
Accumulating studies have confirmed that the circRNA 
content in the exosomes of some diseases is anomalous, 
indicating that they are promising diagnostic molecu-
lar markers [71, 72]. It is also feasible that cells transfer 
circRNAs to other cells or even throughout the body 
via excretion in exosomes. Therefore, they may act as 
mediators to ensure natural cell-to-cell communications. 
Besides, exosomes may bring abnormal amount of circR-
NAs to target cells, which is also an important source of 
various pathophysiological processes [71, 72].

Degradation of circRNAs
Although the structure is highly stable and are resist-
ant to exonucleases [7, 8, 11], they will eventually be 
degraded through the involvement of several unique 
and diverse degradation pathways. The binding of 
miRNAs to circRNAs can initiate the Argonaute 2 
(Ago2)-mediated RNA decay, which is executed by the 
RNA-induced silencing complex (RISC) [94]. However, 
this phenomenon may not be as common as expected 

since similar to linear RNAs, the overwhelming major-
ity of circRNAs bear sequences that are only partially 
complementary to miRNAs [13]. CircRNAs modified 
by m6A may be decayed by the ribonuclease complex 
RNase P/MRP, which will be discussed in detail below. 
In addition, there is a structure-mediated RNA decay 
model (e.g., high overall 3′ UTR structure) formed 
by base pairing in circRNAs that can be targeted and 
degraded by UPF1 and G3BP1 [95]. Upon viral infec-
tion, circRNAs can also be globally degraded by acti-
vated RNase L, which is required for PKR activation 
[96]. Actually, the above-mentioned degradation path-
ways are also suitable for some other RNA molecules 
and not unique to circRNAs.

Crosstalk between m6A and circular RNAs
Through the above summary, we can find that there are 
many intersections between the regulatory pathway of 
m6A and the life cycle of circRNAs. Indeed, there have 
been many studies focusing on the crosstalk between 
m6A and circRNAs. Details are described below and a 
summary is shown in Table 2 and Fig. 3.

m6A modulates the expression of circRNAs
Similar to other RNA molecules, m6A can also modu-
late the expression of circRNAs through regulating their 
generation, stability, or degradation. A recent study 

Table 2  Crosstalk between m6A and circRNAs

Crosstalk circRNA Roles Refs

m6A regulates circRNAs expression circMETTL3 METTL3 facilitates circMETTL3 expression in an m6A-dependent manner [97]

circ1662 METTL3 induced circ1662 generation by binding its flanking sequences and installing 
m6A modifications

[98]

circCUX1 METTL3 mediates the m6A methylation of circCUX1 and stabilizes circCUX1 [99]

circRNA-SORE m6A modification raises circRNA-SORE level by increasing RNA stability [100]

circRNAs m6A modification cause circRNAs selectively degraded by RNase P/MRP complex [101]

m6A regulates circRNAs distribution circGFRα1 METTL14 promotes cytoplasmic export of m6A-modified circGFRα1 through the 
GGACU motif

[102]

circNSUN2 m6A modification of circNSUN2 facilitates cytoplasmic export [60]

m6A regulates circRNAs function circRNAs Extensive m6A modifications in circRNAs drives protein translation in a cap-independ-
ent fashion

[87]

circRNAs m6A modification controls circRNA immunity [103]

circRNAs regulate m6A hsa_circ_0072309 hsa_circ_0072309 upregulates the expression of m6A demethylase FTO by targeting 
miR-607

[104]

circMAP2K4 circMAP2K4 promote YTHDF1 expression by binding with hsa-miR-139-5p [105]

circRAB11FIP1 circRAB11FIP1 regulated the m6A methylation of ATG5 and ATG7 mRNA via upregulat-
ing FTO

[106]

circMEG3 circMEG3 inhibits the expression of METTL3 dependent on HULC [107]

circNOTCH1 circNOTCH1 regulates the m6A modification on Nothch1 mRNA by binding to 
METTL14.

[108]

circZbtb20 circZbtb20 enhances the interaction of ALKBH5 with Nr4a1 mRNA, leading to ablation 
of the m6A on Nr4a1 mRNA

[109]

circSTAG1 circSTAG1 regulates m6A modification on FAAH by mediating ALKBH5 translocation [110]
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confirmed that METTL3 can install m6A in the reverse 
complementary sequences of flanking introns of circ1662, 
as well as facilitate the generation of circ1662 based on 
the intron pairing-driven circularization pattern [98]. 
Moreover, circRNAs modified by m6A can be recognized 
by readers and exhibit changes in stability, resulting in 
altered expression [99, 100]. A subset of m6A-containing 
circRNAs may be endoribonucleolyticly degraded by the 
RNase P/MRP complex, which depends on the coopera-
tive binding of HRSP12 and YTHDF2 [101]. The dynamic 
balance or the imbalance of circRNA expression is a 
consequence of the combined effect of these regulatory 
factors.

m6A modulates the distribution of circRNAs
Some studies have demonstrated that the m6A modi-
fication on circRNAs may modulate their nuclear 
exportation [60, 102]. This process may depend on the 
recognition and mediation of m6A readers [60]. Despite 

these initial findings, the mechanisms underlying the 
subcellular trafficking of m6A-circRNAs remains largely 
unknown.

m6A modulates the function of circRNAs
As described above, although considered to be non-cod-
ing RNAs, some circRNAs have the potential to encode 
proteins. Due to their unique structure, the translation of 
m6A modified circRNAs also differs from that of the lin-
ear RNAs. In this process, m6A-circRNAs are identified 
by the reader, YTHDF3, which recruits the translation 
initiation factors, eIF4G2 and eIF3A, to initiate transla-
tion in a cap-independent manner [87]. The m6A modi-
fication also influences the function of circRNAs in the 
regulation of innate immunity. Unmodified foreign cir-
cRNAs can directly trigger RIG-I signaling to promote 
immune activation; however, m6A-circRNAs may recruit 
YTHDF2 to form a complex with RIG-I and suppress the 
RIG-I immune signaling [103].

Fig. 3  Crosstalk of m6A with circular RNAs. m6A modification is involved in the life cycle of circRNAs. First, m6A modification on pre-mRNAs may 
influence the splicing and generation of circRNAs. Second, m6A modification on mature circRNAs could affect the nuclear exportation of circRNAs. 
Third, m6A modification on circRNAs may influence the molecular functions of circRNAs, including transcription regulation, miRNA sponging, RBP 
binding and translation. Fourth, m6A modification may influence circRNA degradation or even entering the exosomes. Also, circRNAs can regulate 
m6A by affecting the expression or the functions of the m6A writers, erasers and readers. There are some predicted interactions between m6A and 
circRNAs have not been validated yet, which are marked with “?” in the figure
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circRNAs modulates m6A
Conversely, circRNAs can also regulate m6A modifica-
tion. Some circRNAs can regulate m6A by affecting the 
expression of the m6A writers, erasers, and readers [104–
107]. Other circRNAs may influence the functions of 
m6A writers, erasers, and readers [108–110]. For exam-
ple, circRNAs can competitively bind to writers and con-
tend modifications, thereby hindering the modification of 
other RNAs by writers [108]. In addition, circRNAs can 
not only recruit ALKBH5 to ablate the m6A modification 
of target mRNA, but also capture ALKBH5 to suppress 
its translocation into the nucleus and impede its role of 
ablating m6A [109, 110]. Generally, circRNAs can only 
mediately modulate m6A modification by regulating 
m6A writers, erasers or readers instead of directly affect 
m6A modification by themselves.

Conclusions and prospectives
m6A modification and circRNA biology are undoubtedly 
current research hotspots, and the crosstalk between the 
two has attracted increasing attention from the research-
ers. In this review, we describe the complexity of m6A 
modification and circRNA biology, and present the iden-
tified crosstalk between them. Although some efforts 
have been devoted in this field, the study of correlation 
between m6A and circRNAs remains in the initial stages. 
In consideration of the current research realities, lots of 
questions remain to be addressed. In reference to the 
crosstalk mentioned in the previous section, we will pre-
sent some perspectives which may represent potential 
future hot topics. These perspectives are also displayed in 
Fig. 3.

First, previous studies have only reported that m6A in 
the reverse complementary sequences of flanking introns 
facilitates the generation of circRNA through the intron 
pairing-driven circularization pattern [98]. However, 
other studies have verified that the m6A modification in 
pre-mRNA may regulate RNA-protein interactions and 
pre-mRNA processing [42–44]. This regulatory mode has 
been investigated in mRNA maturation but not in circR-
NAs biogenesis. Here, we propose that the m6A modi-
fication in pre-mRNA may affect the binding of some 
RBPs and regulate the generation of circRNA via RBP-
mediated circularization. Whether m6A modification can 
modulate the lariat-driven circularization of circRNAs is 
also a topic worth examining.

Second, although it has been confirmed that m6A can 
regulate the stability of circRNAs [99, 100], in consid-
eration of the specific circular structure and degradation 
pathway of circRNAs, is there any difference between cir-
cRNAs and linear RNAs in the mechanism of m6A regu-
lating stability? Similarly, does the regulation of m6A on 
circRNAs exportation differ from its regulation on linear 

RNAs? In addition, studies have revealed that m6A may 
modulate the degradation of circRNAs [101]; however, 
whether this mode can participate in the normal life pro-
cess or disease development has not yet been explored.

Third, while m6A are important initiators in the trans-
lation of circRNAs [88], it is unknown whether they are 
translation sustainers or terminators. Since m6A is able 
to affect RNA-RBP interactions [47], it may also influ-
ence the binding of RBPs to circRNAs. Similarly, the 
m6A modification on lncRNA is important for the bind-
ing of miRNAs [66], and there is an excellent probability 
that the m6A modification on circRNAs affects miRNA 
binding. Due to the recent research focus on miRNA 
sponging, potential m6A-mediated miRNA-circRNA 
interactions may represent another area of research 
interest.

Fourth, circRNAs can contend the modification of m6A 
writers [108], which may also apply to erasers and read-
ers. In addition, while CircRNAs can recruit m6A eras-
ers to ablate m6A modifications, it remains unknown 
whether they can also recruit m6A writers and readers to 
install and identify the m6A modifications.
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