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Abstract 

Chimeric Antigen Receptor (CAR) T-cells represent a breakthrough in personalized cancer therapy. In this strategy, 
synthetic receptors comprised of antigen recognition, signaling, and costimulatory domains are used to reprogram 
T-cells to target tumor cells for destruction. Despite the success of this approach in refractory B-cell malignancies, 
optimal potency of CAR T-cell therapy for many other cancers, particularly solid tumors, has not been achieved. Fac-
tors such as T-cell exhaustion, lack of CAR T-cell persistence, cytokine-related toxicities, and bottlenecks in the manu-
facturing of autologous products have hampered the safety, effectiveness, and availability of this approach. With the 
ease and accessibility of CRISPR-Cas9-based gene editing, it is possible to address many of these limitations. Accord-
ingly, current research efforts focus on precision engineering of CAR T-cells with conventional CRISPR-Cas9 systems or 
novel editors that can install desired genetic changes with or without introduction of a double-stranded break (DSB) 
into the genome. These tools and strategies can be directly applied to targeting negative regulators of T-cell function, 
directing therapeutic transgenes to specific genomic loci, and generating reproducibly safe and potent allogeneic 
universal CAR T-cell products for on-demand cancer immunotherapy. This review evaluates several of the ongoing 
and future directions of combining next-generation CRISPR-Cas9 gene editing with synthetic biology to optimize CAR 
T-cell therapy for future clinical trials toward the establishment of a new cancer treatment paradigm.
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Background
The utility of CRISPR-Cas9 technology has led to a 
surge in applying genome editing approaches to com-
bat a variety of genetic disorders and cancers. In these 
cases, inherited genetic diseases with known gene muta-
tions can be corrected [1, 2]. This technology can also 
be applied to induce specific mutations in the setting of 
in  vitro and in  vivo experimental models of disease to 
study various interventional strategies. In the context of 
T-cell-based immunotherapies, applications of CRISPR-
Cas9 technology are being explored to improve T-cell 

effector function and persistence, reduce treatment-
related toxicity, and increase patient product availability 
[3, 4].

Main text
Overview of chimeric antigen receptor T‑cell therapy 
and resistance mechanisms
CAR T-cell therapy has led to sustained remissions in 
populations of otherwise refractory patients and, more 
specifically, has demonstrated complete response rates 
of > 80–97% in certain B-cell malignancies such as acute 
lymphoblastic leukemia (ALL) [5, 6]. Because of this 
clinical efficacy, preclinical development of CAR T-cell 
therapy for several other cancer types is an area of active 
investigation, and the future of cellular immunotherapy 
will undoubtedly be extensive and dynamic. In the set-
ting of conventional CAR T-cell therapy, a patient’s 
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own T-cells are genetically engineered to express a syn-
thetic receptor that recognizes a specific target anti-
gen on tumor cells. The specificity and activation of the 
CAR T-cells typically result from combining extracel-
lular antigen-binding domains from antibodies (e.g., 
single-chain variable fragments, scFvs; heavy-chain vari-
able domain (VHH)-based binders) with the intracellular 
signaling machinery of the T-cell receptor (TCR) CD3ζ 
chain. Additional co-stimulation is provided in tandem 
with the signaling domains of molecules such as CD28 
or 4-1BB to further potentiate T-cell activation and per-
sistence (Fig.  1) [7–9]. The first United States Food and 
Drug Administration (FDA)-approved applications of 
CAR T-cell therapy occurred in 2017 with the release 
of the commercial CD19-directed CAR T-cell therapies 
Kymriah (tisagenlecleucel) and Yescarta (axicabtagene 
ciloleucel) that are used to treat B-cell ALL and diffuse 
large B-cell lymphoma (DLBCL) [7, 10, 11]. While CD19 
is a transmembrane glycoprotein continuously and sta-
bly expressed on all stages of B-cell lineage differentia-
tion and is thus present on healthy as well as malignant 
B-cells, aplasia resulting from CD19 CAR T-cell admin-
istration is clinically tolerated and made feasible through 
immunoglobulin replacement therapy [12]. Since then, 
other CD19 CAR T-cell products, as well as the first 

non-CD19 directed CAR targeted to B-cell maturation 
antigen (BCMA) for the treatment of multiple myeloma, 
have been approved [10, 13–15]. Additionally, numerous 
clinical trials are currently underway to assess the safety 
and efficacy of CAR products for hematopoietic malig-
nancies and non-hematopoietic cancers. These next-
generation products incorporate single antigen binders, 
tandem CARs and co-expressed receptors against multi-
ple tumor targets, logic-gated receptors, and engineered 
delivery of payloads to enhance effector T-cell function 
[10, 16].

Despite these developments, the causes of unsuccess-
ful CAR T-cell therapy are multifactorial and may not be 
addressed with synthetic biological improvements alone. 
Major limitations to successful CAR T-cell therapy occur 
both  during the  manufacturing process in  vitro and 
during CAR T-cell proliferation in  vivo. In many B-cell 
malignancies, complete responses are associated with 
robust CAR T-cell proliferation, with a clear advantage 
of long-term CAR T-cell persistence [6, 17–21]. Thus, 
limited CAR T-cell expansion and persistence following 
therapy is a common mechanism of treatment failure. 
Lack of therapeutic levels of in  vivo CAR T-cell prolif-
eration and persistence can be attributed in part to the 
pre-existing exhausted state of baseline or manufactured 

Fig. 1  Schematic representation of a chimeric antigen receptor (CAR) T-cell. CAR T-cells are typically produced by transducing T-lymphocytes 
with a transgene encoding a synthetic antigen receptor. This transgene is integrated into the T-cell genome, transcribed and translated into a CAR 
protein. The core functional components of a CAR are binding and signaling domains separated into extracellular and intracellular compartments, 
respectively. The extracellular binding portion of the receptor is typically comprised of a single-chain variable fragment derived from the variable 
regions of an antibody that recognizes specific tumor antigens, together with a spacer that provides flexibility to the binding domain. The 
transmembrane domain connects the binding domain with intracellular signaling moieties. The TCR-derived CD3ζ chain drives T-cell activation and 
is fused in tandem with co-stimulatory endodomains that allow for robust and sustained function
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T-cells (e.g., in chronic lymphocytic leukemia [CLL]), 
acquisition of CAR T-cell hypofunction following infu-
sion [20, 22–24], a reduction in stem cell memory/cen-
tral memory differentiation [20, 25–28] and premature 
senescence [23]. There are also many patients who can-
not benefit from this therapy because of issues with col-
lecting their autologous T-cells, especially from subjects 
receiving intensive chemotherapy and with low num-
bers of memory T-cells that possess optimal proliferative 
capacity [20, 26].

Additional hurdles are specific to solid tumors where 
CAR T-cells must traffic to tumor sites and surmount 
stromal barriers to infiltrate the tumor bed and elicit 
tumor-specific cytotoxicity. Even if trafficking and infil-
tration are successful, T-cells can become dysfunctional 
due to a toxic tumor microenvironment (TME) char-
acterized by metabolic perturbations, the presence of 
inhibitory soluble factors and cytokines, as well as ele-
vated frequencies of suppressive immune cells or tumor 
cells that secrete these mediators and overexpress ligands 
for negative immune checkpoint receptors. Malignant 
cells also undergo antigen loss or downregulation to 
escape and evade CAR T-cell recognition at the tumor 
site. Potential CAR T-cell therapy patients may also 
experience advanced disease progression during the pro-
longed process of gaining enough quality T-cells for man-
ufacturing. The above issues cannot be addressed with 
a single approach. However, many of these challenges 
may be overcome by using site-specific genetic editing 
in combination with next-generation cellular engineer-
ing approaches. With the genesis of easily multiplexable 
precision genome editing using clustered regularly inter-
spaced short palindromic repeats (CRISPR)-CRISPR-
associated protein 9 (Cas9) (CRISPR-Cas9) technology 
[29], there is an opportunity to circumvent many of these 
barriers to CAR T-cell therapy of cancer and fast-track 
integration of this treatment approach into routine medi-
cal management of a variety of malignancies.

CRISPR‑Cas9 gene editing modalities
The emergence of CRISPR-Cas9 technology with its 
simplicity, flexibility, and effectiveness has consider-
ably improved the process and time frame of gene edit-
ing. Briefly, the Cas9 DNA endonuclease enzyme can 
be directed to virtually any site in the genome to create 
a double-stranded DNA break. The cleavage region for 
Cas9 is selected based on a 20-base pair single guide RNA 
sequence (sgRNA) that directs Cas9 to the target DNA 
cut site, which possesses sequence complementarity to 
the sgRNA. This site is additionally specified by a proto-
spacer adjacent motif (PAM) sequence within the target 
DNA downstream of the cleavage site, consisting of any 
variation of 5’-NGG. Together with the core sgRNA, 

there are additional structures and RNA features like 
loops and hairpins needed for active and stable complex 
formation with Cas9 as detailed in Fig. 2 [30]. This site-
specific DNA endonuclease system was first discovered 
in bacteria as a form of an ‘adaptive immune response’ to 
combat infections [31, 32]. Since then, investigators have 
exploited the core components of CRISPR-Cas9 to create 
site-specific gene edits in animal and human cell systems 
for a wide variety of applications (reviewed in [33]).

CRIPSR‑Cas9 can be used for gene disruption and to regulate 
gene expression
The conventional Cas9 protein consists of six domains, 
REC I, REC II, Bridge Helix, PAM-Interacting, HNH and 
RuvC [34, 35]. Rec I is the largest domain and mediates 
guide RNA binding. The role of the REC II domain has 
not yet been well-characterized. The arginine-rich Bridge 
Helix is critical for inducing cleavage activity upon DNA 
binding [35]. Initiation of binding to target DNA is medi-
ated by the PAM-Interacting domain that confers PAM 
specificity [9, 34–36]. The Cas9 nuclease component con-
tains the HNH and RuvC nuclease domains that cleave 
both the target and non-target strands of DNA, generat-
ing a double-stranded break (DSB) (Fig. 2a). Introduction 
of a DSB will induce either non-homologous end join-
ing (NHEJ) or homology-directed repair (HDR) to cor-
rect the break (Fig. 3a). NHEJ occurs during all cell cycle 
phases and is considered error-prone since it can intro-
duce random base pair insertions and deletions (indels), 
resulting in a pool of edited cells that can be clonally 
selected for gene knockout. Alternatively, co-delivery of 
a transgene template, where the template is flanked by 
homology arms upstream and downstream of the cut 
site, enhances high-fidelity homologous recombination 
repair leading to an insertion of the desired transgene 
into the target locus, which is restricted to G2/S phases 
of the cell cycle. The transgene insertion can consist of 
anything from an expression marker (e.g., fluorescent 
molecule), a selectable reporter, an element that will up- 
or down-regulate target gene expression, or an entirely 
new gene cassette [37].

Different Cas9 delivery methods and enzyme variants can 
limit off‑target editing
DSB induction permits gene disruption and/or 
transgene insertion into target loci. However, there are 
risks associated with such breakage when it occurs at 
off-target sites, potentially introducing unintended 
genome alterations. Thus, precise control of when and 
where DSBs occur is beneficial for reducing the fre-
quencies of unintended indels and translocations [38] 
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and preventing selection of p53 inactivated cells [39, 
40]. It has been demonstrated that direct delivery of a 
pre-formed Cas9/gRNA ribonucleoprotein (RNP) com-
plex into cells allows for Cas9 to be active immediately. 
The RNP is also quickly degraded once internalized, 
and therefore decreasing the amount of time Cas9 is 
present for potential off-target cleavage, but enough 
time to still maintain an optimal threshold of on-target 
editing efficiency [41–43].

Several Cas9 enzyme variants have also been devel-
oped to overcome the disadvantages of DNA DSB 
cleavage. For example, Nickase Cas9 (nCas9) variants 
contain mutations in either the RuvC or HNH domain 
which render Cas9 capable of cleaving only the targeted 
or non-targeted DNA strand, respectively [44] (Fig. 2b). 
The use of two pairs of nCas9/gRNA complexes flank-
ing a targeted site allows for greater control of where 
a DSB can occur, as both complexes need to be at 
the same cut site for inducing  the DSB, allowing for 
reduced off-target DSB generation [45]. Mutations in 
both catalytic domains create a catalytically dead Cas9 
(dCas9) variant (Fig.  2c). dCas9 can easily be tethered 
to other functional enzymes to elicit a variety of site-
specific modifications, independently of Cas9 catalytic 
activity [46].

Base editors can be used to introduce single base pair 
transitions
In the process of base editing (Fig.  3b), introduction of 
DNA point mutations can create or repair single nucleo-
tide variants, modify donor and acceptor splicing sites, 
alter codon composition to change an amino acid code or 
introduce a premature STOP codon [47–49]. Accordingly, 
base editors can introduce four transition mutations that 
substitute a pyrimidine for another pyrimidine or purine 
for another purine (CT, TC, GA, AG) [48]. The enzymes 
used to catalyze these reactions are cytidine and adenosine 
deaminases. Cytidine deaminase induces the deamination 
of cytosine bases to uracil. During DNA replication, DNA 
polymerase ‘reads’ uracil as thymine, as these bases have 
the same base-pairing properties, resulting in a functional 
cystine-to-thymine correction in the nascent DNA strand. 
Adenosine deaminase acts in a similar manor, catalyzing 
the deamination of adenosine to inosine (I), which is ‘read’ 
by DNA polymerase as a guanine [50]. Base editing acts 
within a small window of specificity when directed to a pre-
cise site via a guide RNA (i.e., 13–18 base pairs upstream of 
the PAM site) [48]. To avoid off-target cuts [51–55] while 
achieving maximal editing efficiency, several Cas9 and 
deaminase variants have been developed that exhibit differ-
ent PAM specificities [56–58] or editing windows [59–61]. 

Fig. 2  CRISPR/Cas9 components and Cas9 enzyme class variants. (Left) Endonuclease Cas9 can cleave a specific site within DNA as determined 
by the complementarity of the synthetic (crispr) crRNA to the target DNA strand, together with a (trans-activating) tracrRNA hairpin to provide 
structural stability. The crRNA and tracrRNA make up a single guide RNA (sgRNA) complex. Additional specificity is provided by the protospacer 
adjacent motif (PAM) that directs Cas9 to cut 3 base pairs upstream. a Cas9 cuts DNA via its HNH and RuvC domains that each cut a single DNA 
strand, resulting in a double-stranded break. b Mutations in one domain or both domains restrict(s) Cas9 to perform single-strand nicking (nCas9) 
or (c) to possess no catalytic activity (dCas9). Created with BioRender.com
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Initial base editors relied on dCas9, but more recent inves-
tigations demonstrated that nCas9 is preferred for higher 
editing efficiency, as it can nick the non-edited strand to 
encourage the C-U or AI modified strand to be used as the 
template during DNA repair, resulting in a fully preserved 
edit [50]. Cytidine deaminase base editors are commonly 
used to generate premature STOP codons during tran-
scription [48]. Finally, adenosine deaminase base editors 
can be used to alter splice donor/acceptor sites.

Prime editors can be applied to introduce transversions 
and deletions or insertions
A major limitation of base editing is that it cannot be 
applied to introduce transversion mutations (i.e., pyrimi-
dine to purine and vice versa) as well as small deletions 

or insertions. To address this constraint, an alternative 
technology known as ‘prime editing’ was developed to 
facilitate all possible base-to-base conversions and tar-
geted insertions or deletions without inducing DSBs 
[62]. In this strategy, nCas9 is tethered to an engineered 
reverse transcriptase (RT) enzyme and a prime editing 
guide RNA (pegRNA) directs this nCas9/RT complex 
to the desired genome region. In addition to the target 
recognition site, the pegRNA contains a binding region 
that associates with the nicked DNA strand serving as 
a primer, followed by an RNA sequence encoding the 
new template. RT synthesizes DNA from the pegRNA 
sequence onto the nicked DNA strand for further liga-
tion. This creates a DNA mismatch, which can be cor-
rected using a second nCas9/guideRNA complex (PE3 

Fig. 3  Applications of Cas9 variants. a Double-stranded DNA breaks (DSBs) generated by the Cas9 nuclease will be repaired by non-homologous 
end joining (NHEJ) or homology-directed repair (HDR) within the cell. During NHEJ, the ligase frequently adds random insertions and deletions 
(indels) to repair the break site. This process is considered as error-prone and used to cause generalized gene disruptions, typically with a 
loss-of-function outcome. HDR uses a repair template that has homology with sites upstream and downstream of the cut site, allowing for 
recombination of the template for an error-free repair. For gene editing purposes, an exogenous donor DNA repair template can be designed to 
insert large foreign DNA constructs into the site, allowing for site-specific knock-in that can result in reduction or gain of activity at the desired 
locus, or replacement with a new gene cassette. b nCas9 can be tethered to cytidine and adenosine deaminases to allow for single-base pair 
editing. Cytidine deaminase catalyzes the conversion of CT while adenosine deaminase will catalyze the conversion of AG. Base editing can be used 
to cause gene disruption without generating DSBs by altering coding regions to introduce premature STOP codons or to interfere with splicing 
donor/acceptor sites. nCas9 can also be fused to reverse transcriptase (RT), together with a specialized guide RNA (pegRNA) forming a complex that 
can be used to introduce larger sequence additions into a DNA region without creating DSBs. c Enzymatically dead Cas9 (dCas9) can be tethered to 
transcriptional activators (e.g., VP64) to potentiate transcription at a specific promotor region targeted by the gRNA, while transcriptional repressors 
(e.g., KRAB) can attenuate transcriptional activity. dCas9 can be tethered to epigenetic modifying enzymes to catalyze demethylation (e.g., TETs) or 
active methylation (DNMTs) for temporal regulation of epigenetic motifs and transcriptional activity at gRNA-specified loci promoters. Created with 
BioRender.com



Page 6 of 13Dimitri et al. Molecular Cancer           (2022) 21:78 

editing strategy). After nicking the unedited strand, the 
cellular DNA repair machinery corrects this lesion using 
the initial pegRNA-edited strand as a template, which 
leads to the full establishment of the desired gene edit at 
the target locus (Fig. 3b). Prime editors are capable of not 
only inducing base pair resolution substitutions, but also 
insertions of up to 44 base pairs and deletions as high as 
80 base pairs [63]. Thus, like base editors, prime editors 
can be used to modify post-mitotic cells and demon-
strate a reduced risk for genotoxicity that often accompa-
nies the generation of multiple DSBs. Current strategies 
modulating the enzyme activity [64, 65] or the pegRNA 
structure have been undertaken to further improve the 
efficiency of prime editing [54, 66].

Catalytically dead Cas9 fused to transcriptional modulators 
can be used to regulate locus‑specific gene expression
dCas9 can be used to promote or attenuate transcrip-
tional activity based on recruitment of transcriptional 
activators or repressors to specific sites in the processes 
of CRISPR activation (CRISPRa) and CRISPR interfer-
ence (CRISPRi), respectively [67–70] (Fig.  3c). CRISPRi 
incorporates a tethered transcriptional repressor such 
as a Krüppel associated box (KRAB) domain to induce 
repression of transcription at the specified transcrip-
tional start site [46, 71]. Alternatively, CRISPRa involves 
tethering of transcriptional activators such as VP64 to 
promote endogenous gene expression [46, 72]. In addi-
tion, tethering demethylating ten-eleven translocation 
(TET) methylcytosine dioxygenases or DNA methyl-
transferases (DNMTs) can permit locus and region-spe-
cific epigenetic modifications [73, 74] (Fig.  3c). This 
strategy has previously been used to target hypermethyl-
ated promoter regions of tumor-suppressor genes [75].

Prospects for improving CAR T‑cell Therapy 
with CRISPR‑Cas9 gene editing
CRISPR‑Cas9‑mediated gene editing can be exploited 
to ameliorate CAR T‑cell dysfunction
Numerous factors often collectively prevent durable 
remissions following CAR T-cell therapy, including 
autologous CAR T-cell manufacturing issues, limited 
CAR T-cell expansion and/or persistence as well as vari-
ous T-cell-intrinsic and -extrinsic resistance mechanisms 
(Fig.  4a). Recent studies indicate that chronic exposure 
to high levels of antigen leads to a state of T-cell exhaus-
tion. Tumors, by providing a persistent source of antigen 
while avoiding clearance, promote T-cell exhaustion [76]. 
Checkpoint blockade has been a successful approach to 
sustain T-cell function, and  inhibitors that target nega-
tive  T-cell regulators such as CTLA-4, PD-1, LAG-3, 
and TIM-3 are being tested in clinical trials to prevent 
or ameliorate exhaustion [76]. The mechanisms that lead 

to exhaustion in the setting of CAR T-cell therapy are 
complex and remain poorly understood. Our studies in 
patients with relapsed/refractory CLL treated with CD19 
CAR T-cells identified the presence or absence of T-cell 
exhaustion signatures at the time of apheresis, done to 
harvest T-cells for cell manufacturing, as a major predic-
tor of clinical outcome [20].

Several approaches have been taken to improve the 
survival and function of CAR T-cells, including optimi-
zation of costimulatory endodomains [77], prevention 
of tonic signaling [78], inhibition of NR4A transcription 
factors [79], TOX/TOX2 blockade [80] and overexpres-
sion of the canonical AP-1 factor, c-Jun [81]. Recently, 
global analysis of histone modifications in T-cells has 
elucidated marked differences in the chromatin struc-
ture of distinct subsets of exhausted T-cells and their 
transcriptional regulators (reviewed in [82]). Weber and 
colleagues [83] recently demonstrated that transient 
cessation of antigen receptor signaling through forced 
downregulation of the CAR protein or inhibition of 
proximal CAR signaling kinases restores functionality in 
exhausted T-cells through global and site-specific chro-
matin remodeling. Because intermittent CAR T-cell ‘rest’ 
mitigates exhaustion and enhances antitumor potency in 
association with epigenetic reprogramming, engineering 
loss-of-function or modulation of genetic and epigenetic 
targets that potentiate T-cell exhaustion using CRISPR-
Cas9 technology has the potential to prevent and perhaps 
even reverse  CAR T-cell dysfunction. Targeting inhibi-
tory receptors, transcription factors and/or other media-
tors of CAR T-cell dysfunction through gene editing may 
induce reinvigoration of infused cell products. Remov-
ing negative regulators of T-cell persistence and effector 
function (e.g., PD-1, CTLA-4 and LAG-3) using CRISPR-
Cas9 may indeed represent a first obvious tractable point 
of intervention [84–87]. In addition to inhibitory recep-
tors, disruption of Fas receptor/Fas ligand interactions 
have been shown to reduce activation-induced cell death 
and potentiate increased in  vivo CAR T-cell antitumor 
function [88]. Finally, CRISPR/Cas9-mediated target-
ing of diacylglycerol kinase (DGK) metabolism in CAR 
T-cells renders them resistant to immunosuppressive 
mediators in the TME, such as TGFβ [89]

CRISPR/Cas9‑mediated cytokine modulation potentiates CAR 
T‑cell function and reduces toxicity
Genetic strategies to modulate cytokine signaling dur-
ing CAR T-cell activation and expansion have the 
potential to bolster antitumor activity, enhance T-cell 
persistence and/or reduced toxicity. CRISPR-Cas9 sys-
tems that incorporate transgene knock-in approaches 
have been exploited for this purpose. More specifically, 
CRISPR/Cas9-based gene editing combined with viral or 
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non-viral DNA delivery permits simultaneous bi-allelic 
or sequential gene targeting to engineer T-cells with 
expression cassettes in a site-specific manner [90, 91] 
(Fig. 4b). Using this technology, cytokine-encoding DNA 
cassettes can be knocked into targeted genomic loci plac-
ing these genes under the control of specific promoters 
for temporal control of expression. For example, IL-15 
has been knocked into the IL-13 gene locus, thus placing 
IL-15 expression under control of the endogenous IL-13 
promoter, which is highly active upon T-cell activation. 
This creates an inducible T-cell specific IL-15 activation 
switch [92]. Additionally, removal of genes encoding 
cytokines that drive neurotoxicity and cytokine release 
syndrome (CRS) such as GM-CSF [93] and IL-6 [94] 
with CRISPR-Cas9 editing has the potential to produce 
an optimally potent and durably persistent cell product, 
while reducing adverse events associated with aberrant 
cytokine production. Accordingly, GM-CSF knockout 

CAR T-cells maintain normal functions and increased 
antitumor activity in vivo, and potentiate improved over-
all survival, compared to conventional CD19 CAR T-cells 
[93]. Genetic knockdown or ablation of the IL-6 gene also 
has the potential to ameliorate CRS-like toxicity in leuke-
mia-bearing mice [95] (Fig. 4c).

CRISPR‑Cas9 technology can be applied to knocking‑in CAR 
cassettes
Many current CAR T-cell manufacturing protocols 
involve ex vivo autologous T-cell expansions followed by 
transduction with a viral vector containing the chimeric 
receptor sequence [96]. While lentiviral transduction 
and integration is stable and considered generally safe for 
clinical trials and FDA-approved treatments [97], there 
are possible risks for malignant transformation of engi-
neered CAR T-cells via insertional mutagenesis of tumor 
suppressor genes or oncogenes [98]. Additionally, since 

Fig. 4  Summary of CRISPR-Cas9 editing strategies to generate optimally potent and widely available CAR T-cell products. a CRISPR-Cas9 editing 
can be used to develop allogeneic CAR T-cell therapies, which will ameliorate many of the current issues associated with autologous CAR T-cell 
products. b Removal of the endogenous TCR by targeting TRAC​ via CAR transgene knock-in addresses histocompatibility barriers associated with 
third party cell products derived from unrelated donors. c Multiplex CRISPR-Cas9 editing can be used to enhance the antitumor efficacy and 
improve the safety of autologous or allogeneic CAR T-cell products. CRISPR-Cas9-mediated precision editing of clonal master iPSC lines has the 
potential to generate a renewable cell source that can be repeatedly used to mass produce homogeneous, optimally potent, ‘best-in-class’ universal 
CAR T-cell products in a cost-effective manner. Created with BioRender.com
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lentiviruses integrate semi-randomly in the genome, the 
CAR transgene can insert in sites with high or low relative 
transcriptional activity, leading to variable cell-surface 
CAR expression, generating a sub-optimal therapeutic 
product [99]. Placing the CAR transgene under control of 
a strong exogenous promoter may also lead to high con-
stitutive receptor expression. Elevated surface expression 
and interaction with other CAR receptors can gener-
ate ligand-independent tonic signaling in the absence of 
exogenous signal. This can induce both systemic produc-
tion of cytokines as well as a cell profile that drives rapid 
transition to poor effector function and T-cell exhaustion 
[100, 101]. To address these caveats associated with len-
tiviral transduction, CRISPR-Cas9 can be used to deliver 
a CAR-encoding DNA cassette to a specific genomic 
location, allowing for targeted knock-in of the CAR into 
desired sites. For example, an anti-CD19 CAR can be 
directed to the T-cell receptor α constant (TRAC​) locus, 
resulting in uniform CAR expression, reduced tonic sign-
aling, decreased exhaustion and increased antitumor effi-
cacy [90] (Fig. 4b) Targeting TRAC​ also gives the added 
benefit of producing a potential universal product.

Application of CRISPR‑Cas9 in Universal CAR T‑cell product 
generation
Clinical development of novel CAR T-cell therapies is 
often hampered by the low yield and poor functional-
ity of mature, autologous peripheral blood T-cells from 
many elderly and heavily-pretreated patients. A proposed 
solution is the procurement of healthy donor leukocytes 
to produce ‘universal’ T-cells with optimized in vivo per-
sistence and antitumor potency. However, generating 
off-the-shelf CAR T-cell products is challenging because 
multiple genome edits within finite numbers of differ-
entiated T-cells are needed to prevent alloreactivity and 
immunogenicity as well as potentiate robust tumor-spe-
cific activity. The problem has been further exacerbated 
by a gap in the development of renewable sources of 
precision-engineered T-cells, largely resulting from bot-
tlenecks in manufacturing and facile multiplexed genetic 
ablation strategies.

CRISPR‑Cas9 can be used to engineer off‑the‑shelf allogeneic 
CAR T‑cells
The primary challenge to overcome in the setting of 
allogenic products is the induction of graft-versus-host-
disease (GvHD), where the endogenous donor T-cell 
receptor recognizes ‘non-self ’ surface human leuko-
cyte antigen (HLA) molecules in the patient, eliciting an 
immune reaction. Healthy donor allogeneic CAR T-cells 
can be derived from patients’ previous HLA-matched 
hematopoietic stem cell transplant (HSCT) donor or 
from gene-edited cells which have been modified to allow 

them to be given to non-HLA matched subjects. There is 
increasing enthusiasm for the use of so-called ‘third party 
CAR T-cells’ (i.e., non-autologous T-cells). An off-the-
shelf product would allow one to start with T-cells from 
healthy donors to create large quantities of universal 
tumor-specific T-cells that could be used in any patient 
without the need for HLA matching. This strategy would 
reduce costs, speed drug administration, and make the 
T-cell products accessible to lymphopenic and critically 
ill cancer patients that often do not have sufficient num-
bers of healthy T-cells for treatment. As proof-of-concept 
for this approach, CAR T-cells derived from healthy 
unrelated donors have conferred anti-leukemic efficacy 
in children and adults with relapsed ALL [102].

Ideally, universal T-cell products should have 3 essen-
tial characteristics: 1) resistance to recognition/rejection 
by host natural killer (NK) cells and T-cells, 2) optimized 
for potency, persistence and safety, and 3) available as 
on-demand therapeutics. Without the ability to incorpo-
rate such features, large-scale and reproducible low-cost 
production of high quality, safely engineered CAR T-cells 
cannot be achieved and the promise of cell therapies will 
remain elusive to vast populations of cancer patients 
around the world.

The T-cell receptor α constant (TRAC) locus has 
been extensively studied as an ideal target for both gene 
knockout and CAR knock-in [90, 91]. Placing the CAR 
transgene under control of the endogenous TRAC pro-
motor will drive CAR expression in a stable and robust 
manner parallel to physiological TCR expression. This 
will also simultaneously knock out the endogenous TCR, 
which will eliminate GvHD concerns and allow for an 
allogenic T-cell product to be generated. Combining the 
CAR T-cell manufacturing process with simultaneous 
TCR knockout allows for a streamlined approach to uni-
versal CAR T-cell generation (Fig. 4b, c).

Application of multiplex editing and CRISPR‑Cas9 variants 
can optimize universal CAR T‑cell therapy
Successful multiplex CRISPR-Cas9 editing of CAR 
T-cells has been done with targeting inhibitory genes 
(e.g., PDCD1, PD-1) and those encoding death receptors 
such as CD95/Fas to prevent TME-mediated inhibition 
or apoptosis [88]. TRAC​, PDCD1 and B2M triple knock-
out CAR T-cells have demonstrated robust anti-tumor 
function in in  vitro and in  vivo models incorporating 
CD19 and prostate stem cell antigen (PSCA)-directed 
CARs [86, 87]. In terms of the safety and clinical feasibil-
ity of such an approach, we conducted the first-in-human 
trial of multiplex CRISPR-Cas9 edited (i.e., TRAC, 
TRBC and PDCD1 knockout) T-cells with a transgenic 
TCR specific for tumor-associated antigen NY-ESO-1 
in patients with myeloma and sarcoma [3]. Transfer 
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of gene-edited TCR-engineered T-cells into patients 
resulted in durable engraftment with edits at all three 
genomic loci [3]. Although not involving multiplex gene 
editing, generation of PD-1 deficient T-cells via CRISPR-
Cas9 editing of PDCD1 was also demonstrated to be fea-
sible in the setting of clinical product scalability, and this 
product proved to be safe in a phase I trial for advanced 
non-small-cell lung cancer patients [4]. The results of the 
above investigations clearly demonstrate the feasibility 
and short-term safety of treating patients with CRISPR-
edited human T-cells. Favorable outcomes from addi-
tional studies conducted with larger numbers of patients 
should hopefully justify more advanced Phase II and 
Phase III trials in the future (Fig. 4c).

The aforementioned Cas9 variants have shown promise 
in the pre-clinical setting. For example, primary human 
T-cells have been modified using base editors for disrup-
tion of TRAC, B2M and CIITA to reduce expression of 
the endogenous TCR, together with MHC class I and II 
machinery as well as PDCD1 to prevent additional inhi-
bition of CAR T-cell effector function [103, 104]. Base 
editors have also shown promising therapeutic potential 
for enhancing CAR T-cells for treatment of T-cell acute 
lymphoblastic leukemia (T-ALL). The CAR antigens 
for T-ALL are typical pan T-cell markers such as CD7 
and CD3, and anti-CD7 CAR T-cells for T-ALL have 
already been proven safe and efficacious in Phase I clini-
cal trials [105]. Introduction of premature STOP codons 
into the CD7 and CD3 loci of anti-CD7 and anti-CD3 
CAR T-cells prevents the induction of CAR-mediated 
fratricide during the manufacturing and infusion pro-
cess [106]. dCas9 tethered to transcriptional repressor 
KRAB targeting the PDCD1 gene is effective in gener-
ating anti-HER2 CAR T-cells with low PD-1 expression 
to confer checkpoint inhibition resistance [107]. Prime 
editors, while still in their infancy, can efficiently edit the 
genomes of human cell lines and human primary T-cells 
[108]. The search-and-replace nature of prime edit-
ing also provides a potentially more adaptable method 
to simultaneously introducing additional complex gene 
edits into T-cells (e.g., certain gain of function mutations) 
that can enhance CAR T-cell therapy, but are challenging 
to achieve with endonuclease-based gene or base editing 
approaches (Fig. 4c).

The challenges of producing a universal CAR T-cell 
product from finite numbers of mature, fully differenti-
ated healthy donor T-cells are compounded by the antici-
pated engineering demands, particularly for solid tumors 
in which multiple CRISPR-Cas9-based gene edits are 
needed to be combined with CAR-based recognition 
to achieve safety and efficacy. For example, in the set-
ting of allogeneic T-cell therapies involving checkpoint 
blockade, expression of a transgene encoding a synthetic 

antigen receptor is required, in addition to knockout of 
several inhibitory molecules (e.g., PD-1, CTLA-4, TIM-3, 
LAG-3) as well as T-cell receptor (TCR) alpha and beta 
constant regions (TRAC​ and TRBC). As these therapies 
require several genetic edits within mature T-cells, inef-
ficiencies and combinatorial stochasticity in production 
result in a final product that typically contains many dif-
ferent populations of cells with variable editing combina-
tion efficiencies that need to be evaluated and optimized 
to increase efficacy [103].

To specifically address cell source material to gener-
ate allogeneic products, CAR T-cell therapeutics can be 
derived from inducible pluripotent stem cells (iPSCs) 
amenable to genetic modification and differentiation into 
mature tumor-targeted T-cells. iPSCs are obtained from 
adult somatic cells by inducing expression of a combina-
tion of transcription factors (c-MYC, OCT3/4, SOX2 and 
KLF4) that transform cells into a pluripotent state [109, 
110] (Fig. 4c). Pluripotent stem cells can give rise to the 
three embryonic germ layers, rendering them capable 
of differentiating into any specified cell type, with lym-
phoid lineages stemming from mesoderm progenitors 
[111, 112]. Because iPSCs are stem-like cells, they can 
be cultured unlimitedly and indefinitely in  vitro under 
proper conditions which allow for a continuous produc-
tion of T-cells [111]. Proof-of-concept studies have dem-
onstrated successful generation of CAR T-cells from T 
lymphocyte-derived iPSCs [113]. However, the use of 
‘feeder-free’ culture systems will likely be necessary for 
clinical-grade scalability and production [114]. Ideal con-
ditions to achieve differentiation of mature T-lympho-
cytes involve incorporation of thymic niche promoting 
Notch/TCR signaling, as well as soluble factors such as 
IL-7, FMS-like tyrosine kinase 3 ligand (FLT3), stem cell 
factor (SCF), and the chemokines CXCL12 and CCL25 
[111, 114].

Because downstream differentiated T-cells are derived 
from the same iPSC clone, CRISPR-Cas9 editing of iPSCs 
permits stable and consistent knockdown of factors such 
as the endogenous TCR and major histocompatibility 
complex (MHC) genes as well as genes encoding inhibi-
tory molecules such as PD-1 to create unique pools of 
allogenic T-cell products with superior antitumor func-
tionality, as has been previously seen in edited primary 
T-cells directed against glioblastoma and acute lympho-
blastic leukemia in vivo models [90, 115]. Ideally, this will 
lead to a bank of selected iPSC lines with a consistent and 
optimally potent downstream differentiated final prod-
uct for off-the-shelf therapies (Fig. 4c). The combination 
of precision iPSC programming using CRISPR-Cas9 and 
CAR technology sets the stage for the emergence of a 
new class of renewable and highly controllable off-the-
shelf T-cell therapeutics.
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Conclusions
The clinical efficacy of CAR T-cell technology has been 
proven in the setting of human cancer. However, there 
are major limitations to accessing this technology. 
Currently, it is a bespoke product made for individual 
patients, and therefore, the time to manufacture can 
prevent access as can the cost. Further, the T-cells used 
as starting material from patients are likely to have 
developed cancer associated T-cell dysfunction, which 
may not be reversible. Advances in CRISPR-Cas9-based 
genome editing will help address the several current 
unmet needs in CAR T-cell therapy. Such advances may 
involve DSB-free genome editing methods like base and 
prime editing to allow precise and controllable genetic 
modification in a robust manner. In addition, CRISPR-
Cas9-induced multiplex knockout of inhibitory mol-
ecules potentiates enhanced CAR T-cell expansion 
and persistence that may allow for circumvention of 
T-cell-intrinsic as well as -extrinsic resistance mecha-
nisms operative in both hematopoietic and non-hemat-
opoietic malignancies. Targeted knock-in approaches 
also have the potential to fine-tune transgene inser-
tion during CAR T-cell engineering to generate effec-
tive and potent cell products with temporally regulated 
effector functions. Finally, procurement of normal 
donor leukocytes or iPSCs to produce a ‘universal’ 
CAR T-cell product that can be CRISPR-Cas9 engi-
neered to overcome certain histocompatibility barri-
ers and with enhanced persistence/antitumor function 
will significantly improve the manufacturing of cellular 
immunotherapies and therapeutic durability. Develop-
ment of next-generation therapies with CAR T-cells, 
involving innovative genetic editing with CRISPR-Cas9 
technology, will ultimately improve affordability and 
reduce off-target toxicities while enhancing antitumor 
effectiveness.
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