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Main text
The pursuit of targeted cancer therapies has greatly bene-
fitted from the existence of large transcriptomic datasets, 
such as The Cancer Genome Atlas (TCGA), which have 
enabled the correlation of intra-tumoral gene expression 
with patient survival. Here, we use pathway enrichment 
data to identify three distinct groups of cancers charac-
terized by cluster-specific biology and diverging mor-
tality rates. To explore the clinical actionability of these 
findings, we leveraged the drug prediction algorithm, 
OCTAD [1] to: (1) determine whether any promising 
investigational drugs can reverse these detrimental gene 
expression patterns; and (2) ascertain whether any FDA-
approved drugs could be repurposed to improve cluster-
specific cancer outcomes.

To perform these studies, tumor tissue mRNA-Seq 
data, patients’ demographic information, and survival 
status for 27 individual cancer types from the TCGA [2] 
(updated through May 2021) were used to compute a 
survival analysis for each gene and each cancer type. We 
then used each gene’s correlation with patient outcomes 
to perform a GSEA [3] hallmark pathway enrichment 
analysis [4], allowing us to understand how each of the 
pathways correlated with patient survival for each cancer 
type. Cancers were then clustered using a shared nearest 
neighbor modularity optimization with the Seurat pack-
age [5], as described in the online Methods.

We next used transcriptomic data from the drug dis-
turbance dataset, LINCS [6] (which has disturbance 
expression data from 71 cell lines treated with 12,442 
compounds) to screen for drugs that could reverse the 
deleterious expression profile associated with each can-
cer cluster. These data were used to calculate a Kolmog-
orov-Smirnov statistic [1] to predict the reversal ability 
of each compound for each cancer type. Briefly, if a com-
pound completely reversed the risk-associated genes (e.g. 
the mortality-linked (hazard ratio > 1) genes clustered at 
the downregulated tail of the disturbance expression dis-
tribution, as detailed in the online Methods), the rever-
sal score would approach the minimum value of − 1. The 
cluster-level effect was then defined as the aggregate of 
the most significant reversal effects for all cancer types 
belonging to a given cancer cluster. Two strategies were 
subsequently used to validate the predicted drugs. First, 
cancer cell lines were treated with the compound pre-
dicted to have the strongest cluster-specific beneficial 
effect, and then submitted for RNA sequencing. The 
observed reversal score was calculated as the weighted 
sum of the differential expression of the top 200 detri-
mental genes, with the survival risk as the weight. Sec-
ond, a pharmacovigilance study [7] was performed for 
the FDA-approved drug predicted to have the strongest 
cluster-specific benefit (restricted to drugs prescribed 
to > 1000 patients in the Stanford Hospitals). Specifi-
cally, 1:5 propensity score matched cohorts (matched 
on demographics, smoking status, comorbid conditions, 
procedures, and therapeutics in the 6 months leading up 
to enrollment) treated with or without the drug of inter-
est were evaluated for cluster-specific cancer incidence 
within 5 years.
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In contrast to prior reports that focused on a cell-of-
origin pattern [2], our pathway-based transcriptomic-
survival analysis (Table S2) identified three cancer 
clusters (Fig.  1A) which had no discernable connection 

between the cancers that clustered together (e.g., cellular 
origin, organ system, sex-specific cancers). For example, 
rectal adenocarcinoma and colon adenocarcinoma were 
clustered in different groups.

Fig. 1  Unbiased genetic analyses identify three distinct cancer clusters which may be targetable in a cluster-specific manner. A. Dimensional 
reduction and clustering of cancer types (full names provided in Table S1) based on transcriptional hallmark pathway expression and correlation 
with patient survival identifies three cancer subpopulations. B. Summary of the detrimental genetic pathways enriched in the ‘inflammatory cluster’ 
(orange), the ‘metabolic cluster’ (blue), and the ‘proliferative cluster’ (black). C. 5-year overall KM survival curves for patients assigned to each cluster. 
D. Drug prediction statistics for the leading compound, AZ-628, which is predicted to specifically rescue the deleterious gene expression profile 
associated with inflammatory cancers (top subpanel). In vitro validation statistics (reversal score) for AZ-628 demonstrates benefit in a representative 
inflammatory breast cancer cell line (MDA-MB-231), but no impact on a representative proliferative lung cancer cell line (A549), nor a representative 
metabolic hepatocellular cancer cell line (HepG2, bottom subpanel). E. Propensity-matched pharmacovigilance studies (matched on demographics, 
smoking status, comorbid conditions, procedures, and therapeutics in the 6 months leading up to enrollment) demonstrate the 5-year incidence of 
each cancer cluster amongst individuals prescribed clopidogrel, an FDA-approved drug predicted to specifically reduce inflammatory cancers
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One cluster, which included glioblastoma multiforme 
and breast cancer, was dominated by inflammatory 
pathways (Fig.  1B), including cytokine and complement 
cascades. This suggested that dysregulation of these path-
ways was associated with worse patient outcomes for 
these cancers and that targeting these pathways may be 
uniquely beneficial for these cancers. The second cluster, 
which included acute myeloid leukemia and hepatocellu-
lar carcinoma, was enriched in metabolic pathways like 
fatty acid metabolism and glycolysis. The remaining can-
cers, including melanoma and colon adenocarcinoma, 
were enriched in proliferative pathways, like the G2M 
checkpoint. Interestingly, when plotted on Kaplan-Meier 
curves, the metabolic cluster had significantly worse 
survival (Fig.  1C; hazard ratio (HR) 1.33 vs. inflamma-
tory cancers, P < 0.001; HR 1.66 vs. proliferative cancers, 
P < 0.001).

To investigate the clinical relevance of these findings, 
we then applied the in silico drug repurposing pipeline 
outlined above. This approach identified numerous pre-
clinical and FDA-approved compounds predicted to 
effectively reverse the high-risk transcriptional signatures 
associated with each cancer cluster. Proof-of-principle 
testing was performed for the top preclinical compound 
(Table S3), AZ-628 (an experimental Raf inhibitor), 
and the top FDA-approved drug, clopidogrel (a widely-
prescribed antiplatelet medicine). As predicted, 0.1 μM 
AZ-628 selectively reversed the expression of survival 
risk genes in  vitro in an inflammatory cancer cell line 
(Fig. 1D). Similarly, clopidogrel use (75 mg/day) amongst 
‘real-world’ patients was associated with a specific reduc-
tion in the incidence of inflammatory cancers, but had no 
effect on other cancer types (Fig. 1E, HR 0.72, P < 0.001).

Conclusions
To date, no study has integrated gene-to-survival cor-
relation data to simultaneously identify similarities 
between cancers and determine which pathways are 
most important for patient outcomes. While prior 
multi-omics efforts identified a cell-of-origin pattern 
across diverse cancer types [2], our analyses demon-
strated that malignancies may be better distinguished 
according to dysregulation of key inflammatory, meta-
bolic, or proliferative pathways. This approach allowed 
groups of cancers to be stratified by mortality risk, and 
revealed important biologic similarities that could pro-
vide novel mechanistic insights. From a translational 
perspective, these efforts also identified novel targets 
that could provide survival benefit for certain cancer 
types, but may need to be avoided for others. While 
prospective validation studies are required, this proof-
of-principle study shows the potential of integrating 

tumor transcriptomics and patient survival data to 
identify important patterns between cancers and pre-
dict targets for future cancer therapeutics.
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