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Introduction
Breast cancer is the most diagnosed malignancy in 
females, with about 2.3  million new cases globally in 
the year 2020, which accounted for 11.7% of all cancer 
incidences [1]. According to the International Agency 
for Research on Cancer (IARC), these numbers are esti-
mated to increase to over 3  million by 2040 [1]. The 
cancer progression is a multistep integrated process 
controlled by several genetic and epigenetic factors. 
Some researchers stated that epigenetic alteration is 
another hallmark of most cancers due to its critical role 
in the initiation of carcinogenesis [2–5]. However, can-
cer develops because of a chaotic tumor microenviron-
ment (TME), including various infiltrating immune cells 
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Abstract
Breast cancer, the most frequent female malignancy, is often curable when detected at an early stage. The 
treatment of metastatic breast cancer is more challenging and may be unresponsive to conventional therapy. 
Immunotherapy is crucial for treating metastatic breast cancer, but its resistance is a major limitation. The tumor 
microenvironment (TME) is vital in modulating the immunotherapy response. Various tumor microenvironmental 
components, such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid-
derived suppressor cells (MDSCs), are involved in TME modulation to cause immunotherapy resistance. This review 
highlights the role of stromal cells in modulating the breast tumor microenvironment, including the involvement 
of CAF-TAM interaction, alteration of tumor metabolism leading to immunotherapy failure, and other latest 
strategies, including high throughput genomic screening, single-cell and spatial omics techniques for identifying 
tumor immune genes regulating immunotherapy response. This review emphasizes the therapeutic approach to 
overcome breast cancer immune resistance through CAF reprogramming, modulation of TAM polarization, tumor 
metabolism, and genomic alterations.
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like tumor-associated macrophages (TAMs), dendritic 
cells (DCs), lymphocytes, and other stromal cells like 
cancer-associated fibroblasts (CAFs), endothelial cells, 
pericytes, and extracellular matrix (ECM) [6]. All these 
components participate in a complex manner through 
cell-cell and cell-matrix interactions to shape the micro-
environment conducive to tumor progression [3, 7, 8]. 
Cancer cells frequently educate stromal cells, such as 
fibroblasts, macrophages, vascular cells, adipocytes, and 
immune cells, to support their growth and spread to dis-
tant sites. The stromal component might dominate the 
tumor tissue in most solid cancers [9]. CAFs constitute 
a significant part of stroma, and various tumor-derived 
factors are known to induce the activation of fibroblasts 
to CAFs [10]. In addition to cancer cells, different infil-
trating immune cells like tumor-associated neutrophils 
(TANs), TAMs, DCs, and mast cells (MCs) have sub-
sequently appeared to enhance the activation of stro-
mal cells, which, in turn, shape the immune suppressive 
TME. This interplay comprises immune-inhibitory 
circles to provide a favorable TME for tumor growth. 
Moreover, CAFs indirectly alter anticancer immunity 
and induce T cell dysfunction and immunologic toler-
ance by upregulating the expression of immune check-
point molecules like PD1/PD-L1 [7]. The dynamic and 
mutual association between cancer cells and the TME 
has the potential to either curb or promote the spread of 
the disease. Immune cells that have invaded the tumors 
prevent their growth by destroying immunomodulatory 
neoplastic cells. However, they might also be responsible 
for developing tumor resistance to treatment by influenc-
ing tumor immunogenicity and selecting tumor clones 
that can cause immune exhaustion [11]. Moreover, the 
immune cells in the TME have a dual function in cancer 
development and metastasis. The type 1 helper T cells 
(Th1), cytotoxic T lymphocytes (CTLs), and natural killer 
cells (NK cells) are associated with an immune stimulant 
microenvironment. In contrast, the regulatory cells of the 
TME, including type 2 helper T cells (Th2), TAMs, regu-
latory T cells (Tregs), and myeloid-derived suppressor 
cells (MDSCs), are associated with immunosuppressive 
microenvironment and poor outcomes [12, 13]. These 
cells prevent tumor growth by eradicating immunogenic 
neoplastic cells or altering tumor immunogenicity, aiding 
tumor escape [14]. Besides these cells, chemokines and 
cytokines are essential members of the tumor immune 
microenvironment (TIME) and play a significant role 
in maintaining the equilibrium between protumor and 
antitumor immune responses [15]. The intricate inter-
actions between the cancer cells and the immunological 
niche affect immunotherapy and many other anticancer 
therapies.

The development of immuno-based therapy in breast 
cancer has made significant progress over the past two 

decades. Though different immunotherapeutic strate-
gies have been explored in breast cancer, the number 
of immunotherapy-based clinical trials increased after 
the advent of immune checkpoint inhibitors (ICIs) 
and antibody-drug conjugates (ADCs). As of January 
2022, according to the data identified on clinicaltrials.
gov, there were 745 immunotherapy-based trials enroll-
ing patients with solid tumors of different cancers, out 
of which 450 trials (60.4%) were explicitly dedicated to 
breast cancer [16]. The ongoing development of immu-
notherapy has contributed to improved outcomes for 
many breast cancer patients. Nevertheless, insights from 
clinical landscapes highlight that TIME composition 
strongly influences the efficacy of immunotherapy [17]. 
Importantly, immune cells are now recognized as criti-
cal players in the emergence of resistance mechanisms 
to immunotherapy in breast cancer. These mechanisms 
hinder the establishment of long-lasting treatments and 
cause cancer growth [11].

This review article focuses on the complex and dynamic 
function of TME to elucidate the interplay between the 
stromal and immune cells. It aims to explore therapeutic 
strategies that may reverse immunotherapy resistance in 
breast cancer.

Recent clinical advances in breast cancer 
immunotherapy
Immunotherapy is a rapidly evolving field in the treat-
ment of cancer. It involves harnessing the body’s immune 
system to recognize, target, and eliminate cancer cells. 
Several types of immunotherapy strategies have shown 
promising results in treating various cancers. These 
involve developing ICIs including monoclonal antibod-
ies (mAbs) to block the immunosuppressive molecules 
and to improve the cytotoxicity of tumor-infiltrating lym-
phocytes such as CTLA4, PD1, and PD-L1. In addition, 
ADCs and cancer vaccines have also exhibited the poten-
tial to deliver cytotoxic drugs and boost the immune 
system. Although the FDA has approved various immu-
notherapeutic agents for treating many cancers, only a 
few are in clinical settings or undergoing clinical trials for 
the treatment of breast cancer [18].

Immune checkpoint inhibitors
The interaction of PD1 expressed in T cells with PD-L1 
on cancer cells suppresses the proliferation and survival 
of T cells, which ultimately leads to immunosuppres-
sion. Pembrolizumab and nivolumab are ICIs that target 
PD1 to prevent PD1/PD-L1 interaction [19]. In contrast, 
atezolizumab and durvalumab act against PD-L1 to 
inhibit its interaction with PD1 [20, 21]. The FDA recently 
approved pembrolizumab for combinatorial application 
with chemotherapy to treat recurrent, unresectable and 
metastatic TNBCs [22]. FDA has approved atezolizumab 
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and nab-paclitaxel combination therapy for treating 
locally advanced or metastatic TNBCs with PD-L1-pos-
itive tumors [23]. In contrast, atezolizumab was approved 
earlier for the treatment of TNBC along with paclitaxel in 
breast cancer but later used for other cancers but not for 
breast [23]. In the phase I clinical trial, another ICI, ave-
lumab, which targets PD-L1, yielded an overall response 
rate of 3.0%, whereas in the case of TNBC patients, the 
overall response rate is 5.2% [24]. CTLA4, or CD152, is 
another immune checkpoint constitutively expressed on 
Treg and activated effector T cells [25, 26]. During an 
immune response, particularly in the priming phase of T 
cell activation, CTLA4 is highly upregulated. It induces 
negative feedback through the binding of CD80/CD86 to 
prevent CD28 co-stimulation and reduce T cell activa-
tion by competitive inhibition [27, 28]. Ipilimumab and 
tremelimumab, two anti-CTLA4 humanized monoclo-
nal antibodies, attenuate negative signals on T cell co-
stimulation [29, 30]. Ipilimumab, in combination with 
nivolumab and paclitaxel, is used to treat the resistance 
in the early stages of TNBC [31]. Tremelimumab and 
durvalumab are under clinical trial to treat metastatic 
TNBC, as the former alone did not exhibit promising 
results [32]. Although TNBC has excellent response rates 
to ICIs as compared to other sub-types of breast can-
cers, the efficacy as a single therapeutic agent is still poor. 
Moreover, these ICIs exhibit several adverse effects such 
as hypophysitis, colitis, thyroid dysfunction and pneumo-
nitis etc [33, 34].

Monoclonal antibodies
mAbs have revolutionized cancer treatment and are 
widely used as immunotherapeutic agents. They target 
specific molecules or antigens on cancer cells and mod-
ulate the immune response to fight against cancer [35]. 
Trastuzumab is the first FDA-approved mAb for HER2+ 
breast cancer treatment [36]. It is employed along with 
other chemotherapeutic drugs to manage early-stage and 
metastatic HER2+ breast cancer [37, 38]. It inhibits the 
HER2 pathway to cause G1 phase arrest and inflicts apop-
tosis and angiogenesis in breast cancer cells by inhibiting 
the PI3K pathway [39, 40]. Trastuzumab also stimulates 
innate and adaptive immune responses through NK cells, 
activation of CTLs, and suppression of Treg cells [41]. 
However, this mAb is reported to be cardiotoxic in nature 
[42]. Pertuzumab is another mAb-approved drug used in 
combination with trastuzumab as the first-line treatment 
for HER2+ as well as non-hormonal metastatic breast 
cancer therapy [43]. It blocks the dimerization of HER2 
with HER3 and EGFR to exhibit cytotoxic effects. This 
combination is also recommended for early treatment as 
well as trastuzumab-resistant breast cancers [44]. Mar-
getuximab is also used in combination with chemothera-
peutic agents for the management of HER2+ metastatic 

breast cancer. It enhances NK cells activity due to its high 
affinity for CD16A and poor binding to inhibitory CD32B 
[45]. This drug also activates macrophages, and neutro-
phils to elicit immune responses [46, 47]. Leronlimab, 
an anti-CCR5 antibody, is currently in a phase I clinical 
trial for TNBC treatment [48]. There is an ongoing clini-
cal study to establish the efficacy of trastuzumab in com-
bination with other chemotherapeutic drugs for treating 
breast cancer including TNBC [49]. Bispecific antibod-
ies are also promising for breast cancer treatment. Zani-
datamab (ZW25), targeting ECD II and ECD IV domains 
of HER2, is currently being clinically tested for HER2+ 
metastatic breast cancer cases (NCT04224272) [50] 
(Table 1). Zenocutuzumab (MCLA-128) and KN026 are 
also in clinical trials for the treatment of HER2+ meta-
static breast cancer [51, 52]. However, these mAbs rarely 
cause severe allergic or inflammatory reactions [49].

Antibody-drug conjugates
Antibody-drug conjugates (ADCs) have been developed 
to deliver a high concentration of anticancer drugs in the 
cells that overexpress the targeted antigen recognized by 
its antibody. This targeted delivery approach allows more 
efficient and selective delivery of the cytotoxic payload to 
cancer cells, thereby minimizing damage to healthy cells. 
While ADCs are not traditionally classified as immu-
notherapy, they utilize the immune system’s mecha-
nisms for targeted delivery and enhanced efficacy [53]. 
Trastuzumab-emtansine (T-DM1), an ADC, is produced 
by conjugating trastuzumab with emtansine, a micro-
tubule inhibitor and blocks HER2 signalling [40]. This 
ADC is approved by the European Medicines Agency 
(EMA) and the FDA for treating HER2+ early invasive 
and metastatic breast cancer patients as a third-line ther-
apy [54, 55]. Combining tucatinib with trastuzumab and 
capecitabine increases OS and reduces brain metastasis 
in patients with HER2+ breast cancer (NCT02614794) 
[56]. Trastuzumab-deruxtecan (T-DXd) is another EMA 
and FDA-approved ADC to treat metastatic HER2+ and 
HER2-low breast cancer as a second-line therapy when 
surgical removal is not recommended [57]. Deruxte-
can, present in this ADC, is a Topo I inhibitor, caus-
ing inhibition of DNA replication, cell cycle arrest, and 
apoptosis [56]. However, T-DXd frequently exhibits sev-
eral adverse effects including interstitial lung disease or 
pneumonitis. Depending on the severity of this adverse 
effect, the treatment may need to be discontinued. 
Proper optimization of the treatment and the adverse 
effect management are required for maximal benefit 
[58, 59]. Although most ADCs, such as trastuzumab-
duocarmazine, MM-302, and RC48-ADC, are based 
on targeting HER2, researchers are also exploring other 
ADCs like ladiratuzumab-vedotin and cofetuzumab-
pelidotin by selecting TNBC-expressing LIV1 and PI3K 
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as molecular targets, respectively [26]. Ladiratuzumab-
vedotin (SGN-LIV1A) is another ADC, consisting of an 
anti-LIV-1 monoclonal antibody linked to monomethyl 
auristatin E (MMAE), which is a potent microtubule-
disrupting agent. LIV-1 is a membrane-type metallopro-
tease overexpressed in most TNBCs [60]. Clinical trials 
are conducted in patients with LIV1 positive, unresect-
able, locally advanced, or metastatic breast cancers with 
this ADC (NCT01969643) [61]. In this trial, SGN-LIV1A 
is tested in TNBC patients in one arm and the HER2+ 
patients in another arm. After completion of this trial, an 
overall response rate (ORR) was found to be 32% and a 
progression-free survival (PFS) of 11.3 weeks in patients 
with metastatic TNBC [61]. Sacituzumab-govitecan, 
also known as IMMU-132, is an antibody-ADC target-
ing TROP2, an antigen often overexpressed in TNBC. 
The antibody component of sacituzumab-govitecan 
binds to TROP2 on the surface of cancer cells, allowing 

the targeted delivery of SN-38 (Topo I inhibitor) to the 
tumor cells [62]. This ADC has been shown to improve 
the ORR and PFS of metastatic TNBC patients [63]. 
Datopotamab deruxtecan, another anti-TROP2 mAb, 
is being investigated in clinical trial for unresectable or 
metastatic TNBC as well as HER2+/ HER2− breast can-
cer cases (NCT05374512; NCT05104866) [64, 65]. It has 
exhibited better therapeutic efficacy with lesser adverse 
effects compared to sacituzumab-govitecan [64, 65]. 
Moreover, glycoprotein-NMB (gpNMB), significantly 
expressed in 40% TNBC, was explored to develop glem-
batumumab vedotin (CDX-011) for MMAE delivery and 
reported to achieve better ORR [66]. However, this ADC 
was less effective than capecitabine in the METRIC phase 
II trial (NCT01997333) [67]. Ongoing clinical trials, such 
as SGN-LIV1A and IMMU-132, are designed to further 
evaluate the potential benefits of these ADCs in treating 
TNBC (NCT04230109, NCT04468061, NCT03424005) 

Table 1  Various Clinical Trials related to multiple therapy in different subtypes of Breast Cancer
Sl. 
No

Type of Therapy Breast Cancer 
Subtype

Clinical Trial 
Identifier

Phase Refer-
ences

1 ZW25 (zanidatamab) plus palbociclib plus fulvestrant HER2+/HR+ NCT04224272 II 50
2 Tucatinib plus Trastuzumab HER2+ NCT02614794 II 56
3 Ladiratuzumab vedotin plus trastuzumab TNBC NCT01969643 I 61
4 Datopotamab deruxtecan plus paclitaxel, nab-paclitaxel, carboplatin, capecitabine, 

eribulin mesylate
TNBC NCT05374512 III 64

5 Datopotamab deruxtecan plus ICC eribulin, capecitabine, vinorelbine, or gemcitabine Inoperable or 
metastatic HR+, 
HER2- breast 
cancer

NCT05104866 III 65

6 Glembatumumab vedotin (CDX-011) plus capecitabine Metastatic 
TNBC

NCT01997333 II 67

7 Sacituzumab govitecan (IMMU-132) plus Pembrolizumab TNBC NCT04230109 II 68
8 Sacituzumab govitecan (IMMU-132) plus

Pembrolizumab
TNBC NCT04468061 II 68

9 Multiple drug treatment (Capecitabine, atezolizumab, ipatasertib, sgn-liv1a, bevaci-
zumab, chemotherapy (gemcitabine, carboplatin or eribulin), selicrelumab, tocilizumab, 
nab-paclitaxel, sacituzumab govitecan, abemaciclib, fulvestrant, ribociclib, inavolisib, 
trastuzumab deruxtecan)

Metastatic NCT03424005 Ib/II 68

10 MUC-1 peptide vaccine TNBC NCT00986609 I 81
11 Dendritic cells Ductal NCT03450044 I/II 95
12 Autologous dendritic cell vaccine HER2- NCT01431196 II 96
13 AdHER2/neu dendritic cell vaccine HER2+ NCT01730118 I 97
14 HER-2/neu pulsed DC1 vaccine HER2+ NCT02061332 I/II 98
15 HER-2/neu pulsed DC1 vaccine HER2+ NCT00107211 I 99
16 Nab-paclitaxel Metastatic NCT00821964 II 101
17 Pembrolizumab plus Flt3L Metastatic NCT03789097 I/II 102
18 huMNC2-CAR44 CAR T cells Metastatic NCT04020575 I 103
19 cMet RNA CAR T cells TNBC NCT01837602 I 103
20 Anti-meso-CAR vector transduced T cells TNBC NCT02580747 I 104
21 CAR macrophages HER2+ NCT04660929 I 106
22 Entinostat plus atezolizumab TNBC NCT02708680 I/II 254
23 Entinostat plus ipilimumab and nivolumab HER2-, TNBC NCT02453620 II 255
24 Imprime PGG plus pembrolizumab TNBC NCT02981303 II 290
25 PLX3397 plus eribulin Metastatic NCT01596751 I/II 291



Page 5 of 27Kundu et al. Molecular Cancer           (2024) 23:92 

[68]. Although all of these ADCs are found to be well-tol-
erated, these may cause cardiotoxicity, hematologic dis-
orders, gastrointestinal problems, hepatoxicity and oral 
mucositis which require proper monitoring and thera-
peutic attention [68].

Vaccines
HER2 has been used as a target to develop breast cancer 
vaccines. Due to its large molecular weight, vaccines have 
been generated by targeting HER2 based on one or more 
HER2-derived peptides. E75 or nelipepimut-S is a pep-
tide-based vaccine that targets HLA-A2-restricted nona-
peptide derived from the extracellular domain of HER2 
protein [69]. GP2 is another peptide vaccine that targets 
HLA-A2-restricted nonapeptide based on the transmem-
brane domain of the HER2 protein [70]. Moreover, the 
AE37 vaccine is a 12-mer peptide that targets the intra-
cellular domain of modified HER2 [71]. Four amino acids 
containing peptides have been added to the intracellular 
domain of the HER2 protein to enhance immunogenic-
ity. HLA-A2-restricted peptides (E75 and GP2) are the 
epitope of MHC class I molecules and primarily activate 
CD8+ cytotoxic T cells [72]. In contrast, the AE37 pep-
tide is presented by MHC class II molecules and primar-
ily stimulates CD4+ T cell activation to elicit an immune 
response [73]. These vaccines are reported to be effec-
tive against low HER2-expressing breast cancer and 
TNBC patients [74, 75]. Researchers are actively explor-
ing the development of vaccines targeting non-HER2 
tumor-associated antigens (TAAs). Cancer-testis anti-
gens (CTAs) are often found to be overexpressed in can-
cer. NY-ESO-1 is an important CTA selected to generate 
breast cancer vaccine [76, 77]. Other CTAs chosen for 
vaccine development are Wilms tumor protein 1 (WT1), 
the melanoma-associated antigen-12 (MAGE-12), the 
folate receptor alpha (FRα), T-box transcription factor 
brachyury and the tumor suppressor transcription factor 
p53 [78–80]. MUC1 vaccines have been generated based 
on mucin1 TAA and are being evaluated in clinical trials 
for TNBC (NCT00986609) [81] (Table 1). Other vaccines 
developed based on TAA for TNBC patients are PVX-
410 (peptide vaccine) and STEMVAC (DNA vaccine) 
[82]. Moreover, tumor-associated carbohydrate (TAC) 
antigens are also used for developing vaccines. P10s-
PADRE is a TAC vaccine currently in a clinical trial for 
TNBC patients [83]. Recently, an α-lactalbumin-targeted 
vaccine is also in a phase I clinical trial [84]. However, 
vaccines are not equally active in all patients due to spa-
tial mutational heterogeneity within individual tumors. 
Therefore, personalized neoantigen vaccines are gener-
ated and tested in clinical trials against TNBC [85, 86].

Recently, DC vaccines are being developed and investi-
gated for different cancer therapies including breast can-
cer. Two types of DC vaccines: DC polypeptide vaccine 

and DC gene vaccine, are primarily studied for breast 
cancer immunotherapy. One DC vaccine containing 
MUC1 antigen along with two adjuvants has shown to 
stimulate cytokine release and CD4+ and CD8+ T cell-
mediated immune response in TNBC mouse model [87]. 
However, MUC1-based vaccines are not found to be 
clinically effective in early breast cancer [88]. DC vaccine 
loaded with P32 peptide exerts immune response using 
in vivo breast cancer model [89]. Another DC vaccine 
with MHC-II binding HER3 peptide exhibits anti-HER3 
CD4+ Th1 immune response to inhibit tumor growth 
in HER3 overexpressing in vivo breast cancer murine 
model [90]. Oxidized cell lysate-loaded spherical nucleic 
acids (SNAs) act as potent immunotherapeutic agent for 
TNBC [91]. Exosome-loaded DC vaccines are also being 
investigated using in vivo breast cancer mouse and ex 
vivo organoid models [92]. DC vaccines developed using 
CD133 mRNA and MUC1 mRNA along with CTLA4 
blockade have shown enhanced immune response and 
inhibition of tumor growth using in vivo murine TNBC 
models [93, 94]. Several clinical trials are in progress to 
evaluate the therapeutic efficacy of DC vaccines in breast 
cancer (NCT03450044, NCT01431196, NCT01730118, 
NCT02061332, NCT001070211) [95–99].

Novel immunotherapy-based approaches
Recently, several novel immunotherapeutic strategies 
have been explored for solid cancers. Activation and 
expansion of DCs are promising immunotherapeutic 
approaches. TLR agonists, the potent activators of DCs 
have exhibited to stimulate immune response for bet-
ter treatment in breast cancer [100]. Clinical trial is 
underway to investigate the efficacy of TLR agonist in 
breast cancer (NCT00821964) [101]. Moreover, these 
agonists are being clinically tested along with Flt3L, a 
stimulator of DC, for the treatment of advanced cases 
(NCT03789097) [102].

CAR-T, CAR-M, CAR-NK, and bispecific antibodies 
are reported to be very effective for breast cancer. Sev-
eral CAR-T therapies are in clinical trials to investigate 
their safety and efficacy. The efficacy of MUC1-specific-
CAR-T cells in TNBC has been established. Moreover, 
its safety is also being evaluated (NCT04020575) [103] 
(Table  1). However, c-Met-CAR-T cells are well toler-
ated in TNBC patients (NCT01837602) [103]. Mesothe-
lin-targeted CAR-T cells are in phase I study in TNBC 
(NCT02580747) [104] (Table  1). CAR-M therapy, such 
as CAR-147, has shown reduced ECM deposition and 
enhanced T cell infiltration using HER2+in vivo breast 
cancer models [105]. CT-0508, an anti-HER2 CAR-M 
is in phase I trial for refractory HER2+ breast can-
cer patients with a parallel assignment intervention 
model (NCT04660929) [106] (Table  1). CD44v6-spe-
cific CAR-NK cells have been found to be effective in a 
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mammosphere model of TNBC [107]. However, engi-
neered immune cell application also involves several 
limitations. Unavailability of suitable target, low antigen 
density, loss of antitumor activity due to exhaustion and 
poor infiltration possess challenges in CAR-T therapy 
[108]. Moreover, this therapy exhibits several adverse 
effects due to targeting antigens present in the normal 
tissues [109]. Common adverse effects such as neurotox-
icity, thrombocytopenia, cytokine release syndromes may 
be life threatening [110]. C-reactive protein along with 
various inflammatory cytokines are also elevated [111]. 
CAR-NK and CAR-M also exhibit several issues like lim-
ited proliferation capacity, insufficient infiltration, lim-
ited availibility, etc [108]. 

Tumor microenvironment-mediated immune 
resistance: role of immune cells
CAF-TAM crosstalk-mediated immune resistance
CAFs and immune microenvironment regulation
CAFs, primarily generated by the trans-differentiation 
of resident fibroblasts, have emerged as critical thera-
peutic targets [10, 112, 113]. Although recent studies 
have identified a subset of CAFs with tumor-restricting 
function, modulating CAFs in combination with immu-
notherapy improved outcomes in different preclinical 
models [114–117]. Different subsets of CAFs have been 
identified based on the expressions of various biomark-
ers. Characterization and exploring the immunomodula-
tory role of CAF populations will be beneficial in dealing 
with immune resistance [118, 119] (Fig.  1). Single-cell 
RNA sequencing (scRNA seq) of TNBC revealed the 
presence of two CAF subpopulations. One state is related 
to features of myofibroblasts, and the other is character-
ized by high expression of growth factors and immuno-
modulatory molecules [120]. This study has indicated the 
involvement of a diverse array of immunoregulatory mol-
ecules in the stromal-immune crosstalk in breast can-
cer. Exploring gene signatures from inflammatory CAFs 
(iCAFs) and differentiated‐perivascular cells revealed a 
strong association with cytotoxic T cell dysfunction and 
exclusion [120]. Costa et al. have identified four different 
subsets of CAFs (CAF-S1 to CAF-S4) with distinct prop-
erties and levels of activation in TNBC patients’ speci-
mens by simultaneous analysis of six fibroblast markers 
(FAP, integrin β1, α-SMA, FSP1, PDGFRβ, and CAV1) 
[121]. Among these subpopulations, CAF-S1 exhibits the 
most prominent immunosuppression action. This CAF 
subset activates Treg cells and promotes Treg-mediated 
inhibition of T cell proliferation [122]. FAP+CAFs exhibit 
an immunosuppressive effect and diminish the efficacy 
of anti-PD-L1 therapy by secreting CXCL12 in murine 
pancreatic ductal adenocarcinoma (PDAC) in vivo model 
[115, 122]. FAP expressed by FAP+CAFs activates STAT3-
CCL2 signaling and induces inflammatory characteristics 

in CAFs. This FAP+/CAF-S1 population boosts MDSCs 
recruitment, resulting in immunosuppressive TME [123, 
124]. CAF-S1/iCAF subtype shapes the immunosup-
pressive TME by recruiting CD4+ CD25+ T cells and 
promoting their differentiation to Treg cells through the 
secretion of CXCL12 [121, 125]. Cremasco et al. have 
identified two distinct populations of FAP+ mesenchymal 
cells based on PDPN expression in breast cancer [126]. 
Myofibroblastic CAF-S1 and PDPN+ CAF subsets exhibit 
reduced IL2 activity and contribute to immunosupppres-
sion in breast cancer [127]. The FAP+PDPN+ population 
of CAFs is enriched at the outer edge of the tumor, in 
close contact with T cells, whereas the FAP+PDPN− pop-
ulation of cancer-associated pericytes (CAPs) is located 
around the vessels. Finally, FAP+PDPN+ CAFs diminish 
the proliferation of T cells in a NO-dependent manner, 
while FAP+PDPN− pericytes are not immunosuppressive 
[126].

TGFβ-regulated CAFs can also contribute to immu-
nosuppression by synthesizing ECM proteins in differ-
ent types of cancers [128]. The CAFs-synthesized ECM 
may impact CD8+ T cell recruitment, thereby modulat-
ing the immunosuppressive environment [7]. A recent 
study has reported that CD16+ fibroblasts induce trastu-
zumab resistance in HER2+ breast cancer by causing 
matrix stiffness through VAV2 signaling [129]. Kieffer et 
al. have further identified eight CAF-S1 subclusters by 
analyzing CAF-S1 fibroblasts derived from breast cancer 
patient samples [122]. MyoCAFs from clusters 0 and 3 
are characterized by ECM proteins and TGFβ signaling. 
The cluster 0/ECM-myoCAF enhances the expression 
of PD1 and CTLA4 in Treg cells, subsequently leading 
to increased TGFβ-myoCAF cellular content [122]. This 
study has highlighted a positive feedback loop between 
specific CAF-S1 clusters and Treg cells and discloses 
their role in immunotherapy resistance [122] (Fig.  2). 
The TGFβ driven expression of leucine-rich repeat-
containing protein 15 (LRRC15) is associated with poor 
response to immune check point blockade in PDAC 
[130]. Targeting TGFβ signaling in myoCAFs might be 
beneficial for overcoming resistance to immunotherapy 
as TGFβ signaling plays a critical role in the formation 
of myoCAFs and restriction of T cell recruitment [131]. 
Grauel et al. have unbiasedly interrogated tumor mesen-
chymal cells, delineating the co-existence of distinct CAF 
subsets in the microenvironment of murine carcinomas 
[131]. This study has shown the neutralization of TGFβ 
signaling significantly reduces the myofibroblast subset 
under in vivo conditions. However, it promoted the for-
mation of a distinct fibroblast population that displays a 
more robust response to interferon and enhanced immu-
nomodulatory properties [131]. These changes correlate 
with improved antitumor immunity and greater efficacy 
of anti-PD1 immunotherapy. It has been reported that 
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a subset of CAFs displays the expression of PD-L1 in 
TNBC patients, suggesting their involvement in immu-
nomodulation and immunotherapy response [132].

However, CAF-rich tumors also show resistance to 
immunotherapy by the exclusion of CD8+ T cells through 
the secretion of chemokines. CAF inhibits TNF- and 
IFN-induced T cell-mediated necrosis and promotes 
immunosuppression by activating NF-κB signaling 
through the secretion of IL-6 and IL-8 in human intra-
hepatic biliary epithelial cells [133]. Upregulation of 

Hedgehog signaling in CAF population leads to higher 
iCAF production leading to activation of Treg cells to 
cause immunosuppression [134]. Biglycan (BGN), a 
prognostic biomarker for predicting immunotherapy 
response is highly upregulated under immune-resis-
tant conditions in CAFs- derived from TNBC patient’s 
specimens [135]. CAF-derived BGN regulates ECM 
remodeling and immune response in breast cancer by 
facilitating the interaction of CAFs with immune cells, 
inhibiting NK cells, CD8+ cells, and MDSCs while 

Fig. 1  Crosstalk between different cell types in the tumor microenvironment. TAMs, CAFs, NK cells, T cells, lymphocytes, and other cells present in the 
tumor microenvironment modulate each other by secreting different cytokines and chemokines. This crosstalk promotes ECM remodeling and angio-
genesis and causes immune suppression in the breast cancer microenvironment
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stimulating tumor-favorable macrophage activation 
[136].

TAMs and immune microenvironment regulation
Macrophages play a significant role in cancer immune 
surveillance. These cells are associated with a poor prog-
nosis, malignant phenotype, and negative hormone 
receptor status in breast cancer [137]. TAMs are the 
most abundant population of tumor-infiltrating immune 
cells and represent the major component of the innate 
immune system in TME [138]. Macrophages are consid-
ered immunoreactive cells due to their phagocytic and 
cytotoxic characteristics. They undergo polarization in 
response to microenvironmental signals into classically 
activated macrophages (M1) and alternatively activated 
macrophages (M2) [139]. M1 subtypes are activated by 
the Th1 cytokines, including tumor necrosis factor (TNF) 
and interferon-γ (IFN-γ). M1 macrophages exhibit their 
antitumor property by producing pro-inflammatory 
cytokines such as TNF, interleukin 2 (IL-2), and reac-
tive oxygen and nitrogen intermediates [140, 141]. The 
M2 subtypes are stimulated by the Th2 cytokines such 

as IL-4, IL-10, and IL-13 and express CD206 (mannose 
receptor), arginase 1 (ARG1), and scavenger receptors 
[140]. TAMs are similar to the M2-macrophages that 
secret pro-tumor cytokines, facilitating tumor progres-
sion [142–144]. Additionally, TAMs influence angio-
genesis and promote cell proliferation and metastasis by 
suppressing the activity of CD8+ T cells [145, 146].

Several cancer cell-derived factors induce the polariza-
tion of M2 macrophages. These cells, in turn, cause tumor 
progression by enhancing tumor angiogenesis, immune 
suppression, invasion and metastasis, and ECM remod-
eling [147]. The functional diversity of TAMs is greatly 
appreciated in cancer invasion, migration, tumorigenesis, 
angiogenesis, therapy resistance, and tumor suppression 
[148]. Several studies have explored targeting TAMs in 
various therapeutic approaches, including immune ther-
apy and anti-angiogenic therapy. Ongoing clinical trials 
are underway to investigate the therapeutic efficacy of 
macrophage repolarization, antibodies targeting CFSRs 
(a receptor of GMCSF), and macrophage depletion for 
cancer therapy [149]. However, novel technologies like 
single-cell omics have explored the information about 

Fig. 2  Role of different CAF subsets in immune tolerance. CAF-S1/FAP+ subset induces immune suppression in tumors by secreting CXCL-12, increasing 
the recruitment and activation of CD8+ CD25+ T cells into Tregs. CAF-S1 subtype is further classified into TGFβ-CAFs and ECM-CAFs. ECM-CAFs enhance 
the expression of PD1 and CTLA4 in T cells, increasing the TGFβ-CAFs. This feedback loop induces resistance to immunotherapy. CAF subsets also exclude 
T cells from entering the cancer cell region by providing a nest around cancer cells, leading to immunotherapy resistance. However, NOX4 inhibition leads 
to the distribution of T cells into cancer cell region, thereby improving the efficacy of immunotherapy in cancer
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the molecular and functional diversity of TAMs in vari-
ous cancers. A recent review has reported seven TAM 
subsets based on their molecular signatures in almost all 
cancer types [150]. Among seven subsets, angio-TAMs 
are pivotal in promoting multiple aspects of tumor pro-
gression. The expressions of VEGF-A and SPP1 (OPN) 
act as molecular signature of this particular subset of 
TAMs [151]. In addition, TAM-associated angiogenic 
factors like VCAN, FCN1, and THBS1 are also reported 
as molecular signatures of breast cancer progression 
[152].

Role of TAMs in immunotherapy resistance
TAMs mainly affect the tumor-killing ability of effector T 
cells to facilitate cancer progression [153]. They primarily 
target arginine metabolism for inhibiting T cell activity. 
TAMs are found to induce ARG1-mediated hydrolysis 
of L-arginine in early-stage breast cancer patients. The 
L-arginine is essential for the functioning of the effec-
tor T cells [154]. Further, nitric oxide synthase (NOS), 
a molecular marker of M1 macrophages, metabolizes 
L-arginine to produce NO, inhibiting the activity of effec-
tor T cells [155]. Since TAMs exhibit reduced expression 
of MHC II using in vivo 4T1 breast cancer mice model, 
they are less efficient in activating T cells and antigen 
presentation [156, 157]. TAMs also secrete various cyto-
kines to regulate the expression of immune checkpoints 
and their ligands, including PD1/PD-L1 [158]. More-
over, in vivo studies have revealed that the genetic defi-
ciency of macrophage common lymphatic endothelial 
and vascular endothelial receptor 1 (CLEVER1) sup-
presses tumor progression by activating the tumor-killing 
ability in effector T cells [159]. These TAM populations 
impede infiltrating T cells while upregulating Treg cells 
in TNBC [160]. TAMs express different ligands for PD1 
and CTLA4 to inhibit T cell activation [161]. They also 
secrete various immunosuppressive factors, including 
CCL20, CCL22, TGFβ, IL-6, and IL-10, that can directly 
inhibit both CD8+ and CD4+ T cell effector function as 
well as recruitment of Tregs into the tumor lesion [153, 
162–165]. TAM-secreted IL-10 inhibits antigen-pre-
senting DCs, thereby hindering tumor immunity [166]. 
TAM-secreted prostaglandins (PGs) and cyclooxygen-
ase-2 (COX-2) also contribute to immunosuppression 
[153]. PGE2, the primary product of COX-2, is crucial 
for breast cancer progression as it binds to EP1-EP4 pros-
tanoid receptors on various immune cells [167]. COX-2 
inhibitors, including aspirin, can decrease the production 
of PGE2, which is associated with a lower risk of breast 
cancer progression as COX-2 is constitutively expressed 
at high levels in breast cancer cells [168]. Both immune 
and cancer cells in the TME release PGE2, which stim-
ulates bone marrow progenitors to differentiate into 
MDSCs and DCs and facilitates their recruitment and 

activation [169]. Moreover, PGE2 induces the M2 polari-
sation of macrophages and their production of PD-L1. 
Therefore, blocking PD-L1 by anti-PD1/PD-L1 immu-
notherapy impairs T cell-mediated immune response 
against cancer [170]. However, TAMs also stimulate IL-6 
by modulating PD1 signaling in response to anti-PD1/
PD-L1 treatment, resulting in an immunosuppressive 
environment in tumors [171]. Moreover, TAMs express 
Fc receptors that inhibit the binding of anti-PD1 anti-
bodies to T cells, thereby preventing the suppression of 
PD1/PD-L1 signaling, leading to resistance to anti-PD1 
therapy using in vivo tumor models [172]. Addition-
ally, TAMs are found to inhibit NK cell-mediated anti-
tumor activity, causing immunosuppression using in vivo 
murine breast cancer model [153, 173].

Interplay between TAM and CAF in remodelling the TIME
Tumor cells interact with stromal cells by secreting 
an array of cytokines, chemokines, and other tumor-
promoting factors in the TME. The tumor-stromal cell 
interaction induces non-cancerous cells to acquire new 
tumor-promoting phenotypes, increasing tumor pro-
gression, multidrug resistance, distant metastasis, and 
immune suppression [3]. Studies using patient speci-
mens have also shown a positive and reciprocal feed-
back responses among stromal cells. As discussed in the 
earlier section, CAFs are one of the most critical stro-
mal cells in the TME, which is known to participate in 
various stages of tumor development through multiple 
mechanisms (Fig.  1). Among all immune cells, macro-
phages play a vital role in the TIME and are known to 
enhance several hallmarks of cancer by infiltrating into 
tumors [174]. Macrophages display a wide range of plas-
ticity and various functional activities in TIME. TAMs 
are the most prominent immune cells near CAF-popu-
lated areas, suggesting strong interactions between these 
two cell types [175]. Several studies in spheroid/ in vivo 
models have reported that macrophage recruitment and 
differentiation are triggered by CAFs via several secre-
tory factors and regulatory networks, thereby imparting 
pro-tumorigenic capabilities in TAMs [176–178]. For 
instance, in melanoma, CAF-secreted cytokines such 
as IL-10, IL-8, CCL2, and TGFβ stimulate macrophage 
recruitment and polarisation into the M2 phenotype with 
tumor-promoting functions [7, 179]. Similarly, CAFs trig-
ger monocyte recruitment and provoke differentiation 
of monocytes to M2 macrophages by secreting SDF-1 
(CXCL12), monocyte chemotactic protein 1 (MCP1), and 
CHI3L1 in breast cancer [180]. The CAF-induced TAMs 
exhibit an elevated expression of immune checkpoints 
such as PD1 and cause immunosuppression by reducing 
T cell activation and proliferation [181]. In breast can-
cer, the recruitment of monocytes to the tumor is trig-
gered by the CAF-driven CXCL12/CXCR4 axis, which 
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also supports the acquisition of an immunosuppressive 
lipid-associated macrophage (LAM) phenotype [182]. 
MSCs acquire CAF-like phenotype through macrophage-
activated signaling, inducing TME remodeling and pro-
moting oncogenic transformation [183]. The interaction 
of CAFs and TAMs can enhance EMT by IL-6 and SDF-
1, leading to activation of CAFs [184]. TAMs can also 
differentiate MSCs into CAFs through various signaling 
cascades [185]. Single-cell and spatial transcriptomic 
analyses revealed that IL-1, chemerin, and TGFβ interact 
with FAP+ fibroblasts and SPP1+ macrophages, allow-
ing immune escape and restricting T-cell invasion [186]. 
FAP+ CAFs induce scavenger receptor A (SR-A)+ TAM 
adhesion via cleaving type I collagen [187]. TAMs with 
the M2 phenotype also control the activation and genera-
tion of CAFs [188]. In addition to their stimulatory action 
on TAMs, CAFs may hinder specific functions of TAMs. 
ERα signaling in CAFs has been shown to decrease the 
expression of specific cytokines and chemokines, such 
as CCL5 (also known as RANTES) and IL-6, that disrupt 
macrophage infiltration and cancer cell invasion [189]. 
Furthermore, M-CSF-1, IL-6, and CCL2 play a vital role 
in the recruitment of monocytes and the elevation of the 
M2/M1 macrophage ratio [190]. Additionally, co-culture 
of cancer cells with CAF-like BM-MSCs does not have 
an invasive ability but supports the proliferation of can-
cer cells, whereas cancer cells co-cultured with TAM-like 
macrophages had the opposite effect [191]. Active CAFs 

produced by macrophage-induced signaling boost TAM 
activity and create a positive feedback loop to support 
cancer growth and inhibit the immune response in the 
TME [192]. Although several reports showed the role of 
CAFs on TAM regulation, further studies are needed to 
understand the impact of macrophages on the regulation 
of CAF phenotypes. The CAF-TAM interaction in shap-
ing TIME in breast cancer is elucidated in Fig. 3.

MDSC-mediated immune tolerance
MDSCs are critical immunosuppressive components in 
the TME. An increased monocytic MDSC population 
is clinically correlated with more aggressive metastatic 
breast cancer [193]. These cells are activated and dif-
ferentiated into atypical T cell suppressive neutrophils. 
Prolonged G-CSF exposure may encourage the tumor-
promoting function of these immunosuppressive neu-
trophils [194]. MDSCs are also involved in regulating 
the function of B cells. They transform B cells into Breg 
cells to suppress T cell-mediated immune response [195]. 
Both monocytic and granulocytic MDSCs deplete ARG1 
and induce PD-L1 expression to recruit Treg cells in the 
TME [196]. These cells also activate STAT3 signaling that 
causes T cell inhibition in response to IL6 using in vivo 
4T1 breast cancer murine models [197]. MDSCs modu-
late MHC I to impede antigen presentation of cytotoxic 
T cells, resulting in immune tolerance in breast cancer 
[198].

Fig. 3  Crosstalk between CAF and TAM in the tumor immune microenvironment. CAFs trigger macrophage recruitment and differentiation through vari-
ous secretory factors and regulatory networks, inducing the pro-tumorigenic capabilities of TAMs. TAMs can also induce CAF generation and activation. 
The interaction of CAF and TAM causes immunosuppression to promote cancer growth via a feedback loop
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DC-mediated immune tolerance
DC is crucial component of TIME due to its antigen pre-
senting function, leading to T cell activation and immune 
response. However, maturation and activation of DCs are 
vital for their immunostimulatory action. Immature DCs 
fails to activate T lymphocytes due to their high endo-
cytic action, causing immune tolerance [199]. Imma-
ture DCs can also increase the expressions of inhibitory 
receptor to impede T cell activation [200]. DCs with high 
PD-L1 expression may inhibit CD80, leading to T cell 
inactivation [200]. CCL4 is associated with DC activation 
and T cell-mediated anti-tumor immune response [201, 
202]. In contrast, CAF-secreted TGF-β interferes in the 
maturation of DCs, inhibiting Treg differentiation [203]. 
The PGE2 secreted by tumor reduces the cytokine and 
their receptor expressions in both NK cells and DCs to 
facilitate immune suppression [204].

Role of metabolic dysregulation and epigenetic 
alteration in tumor microenvironment-mediated 
immune tolerance
Metabolic dysregulation and immune tolerance
Due to metabolic reprogramming, cancer cells exhibit 
the Warburg effect, which describes the observation that 
cancer cells show increased glucose consumption and 
preferentially rely on glycolysis for energy production, 
even in the presence of oxygen. They use glycolytic prod-
ucts to promote their growth and proliferation [205]. The 
glycolytic glucose utilization by tumor cells limits the 
glucose availability in the TME, impeding T cell infiltra-
tion and IFN-γ production as T cells highly depend on 
glycolysis for their differentiation and effector function 
[206, 207]. Moreover, tumor glycolysis stabilizes Treg 
cells and inhibits T cell activation by modulating the 
glucose/lactate ratio in TME, thereby contributing to 
immune tolerance [208]. In low-glucose TME, Treg cells 
can depend on lactate for their survival and immunosup-
pressive action. Therefore, lactate-rich TME induces Treg 
polarization, leading to immune resistance [209–211]. 
HIF1α is also involved in metabolic reprogramming-
mediated immune resistance in breast cancer. It induces 
PDK1 phosphorylation to inhibit pyruvate dehydroge-
nase, impeding pyruvate consumption in the TCA cycle 
[212]. Glycolytic end products such as pyruvate and lac-
tate stabilize HIF1α to stimulate glycolysis further [213, 
214]. Carbonic anhydrase IX (CAIX) is overexpressed in 
TNBC and promotes tumor growth, invasion, and migra-
tion. Lactate upregulates CAIX through HIF1α stabiliza-
tion [215, 216]. High lactate and lactate dehydrogenase 
A (LDHA) expression levels stimulate HIF1α-mediated 
neovascularization and metastasis [217]. Therefore, 
lactate-induced HIF1α accumulation in TME contrib-
utes to immune tolerance. Pyrimidine metabolism, con-
sidered one of the hallmarks of cancer, is reported to be 

associated with immunotherapy response. Inhibition of 
pyrimidine synthesis results in lower CTLA4+ T cells 
in the TME [218]. Earlier studies have established the 
link between pyrimidine metabolism-related genes and 
immunotherapy efficacy [219].

Other immune tolerance mechanisms are also associ-
ated with immunotherapy failure (Fig.  4A). For exam-
ple, high plasma IL-6 levels impair CD8+ CTL function 
through STAT3-mediated basic leucine zipper ATF-like 
transcription factor (BATF). This cytokine impedes CTL 
effector differentiation and gene expression, includ-
ing IFNγ and perforin expression, leading to anti-PD-
L1 therapy resistance in preclinical tumor model [220]. 
Placenta-specific 8 (PLAC8) protein also plays a pivotal 
role in modulating the immune response, cancer growth, 
and progression in TNBC [221–224]. The role of PLAC8 
protein has been established using both breast cancer 
cell lines and patients’ specimens. This protein is overex-
pressed in TNBC, and its stability is regulated by ubiq-
uitin-fold modifier 1 (UFM1), a ubiquitination modifier 
[225, 226]. PLAC8 has been reported to modify PD-L1 
expression in TNBC via its ubiquitination, leading to 
immune tolerance [227, 228]. Moreover, cuproptosis, 
non-apoptotic programmed cell death due to high intra-
cellular copper accumulation, is involved in immune tol-
erance [229]. Cuproptosis-related genes (CRGs) regulate 
TME and immune cell infiltration, leading to tolerance 
of immunotherapy. RAD23B is a vital CRG that affects 
immunotherapy efficacy of ICIs in breast cancer [230]. 
The tumors also exhibit endogenous immune response-
mediated acquired immune resistance (AIR). Endoge-
nous immune response-mediated AIR in tumors hinders 
the antitumor immune response and impacts overall sur-
vival rates by CD8+ cell-induced expression of CD163 
and/or FoxP3 [231]. These data suggested a direct corre-
lation between densities of CD8+ cells with CD163+ and 
FoxP3+ cells in the breast cancer patients’ specimens.

Tumor mutation burden and immune tolerance
Immune suppression within the tumor niche majorly 
contributes to the failure of immunotherapy and its resis-
tance. Differential expression of neo-antigens presented 
by APC due to mutations provokes poor T-lymphocyte 
recognition and activation, which results from tumor 
mutation burden (TMB) [232]. The T cells must be able to 
distinguish between tumor and normal cells after being 
reactivated. It is easier to identify cancer cells if their 
surface displays immunogenic neo-antigens. Since neo-
antigens result from genomic alteration in cancer, with 
increases in TMB, there is an increase in immunogenicity, 
allowing T cells to recognize them and eradicate cancer 
cells [232]. However, the nature and type of mutations in 
TMB as a predictor in response to PD1/PD-L1 immune 
therapy failure in melanoma can be partially explained by 
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the different turnover rates between genomic events and 
the last stages of MHC presentation [233]. In addition, it 
is critical to emphasize that TMB has significant limita-
tions as a predictive biomarker, particularly when used 

alone, from the perspective of immune therapy response 
[234]. First, T cells only recognize a limited percentage of 
non-synonymous mutations as neo-antigens. Second, the 
distinct tumor molecular fingerprints and the clonality 

Fig. 4  Tumor microenvironment-mediated immune tolerance in breast cancer. (A) Tumor microenvironment-mediated immunotherapy resistance 
mechanisms. Different cell types of the tumor microenvironment, such as CAF, TAM, and MDSC, contribute to immune tolerance by inducing differentia-
tion of Treg cells, antigen uptake and maturation of dendritic cells, and M2 polarization. These cells also suppress CD8+ and NK cell activation and recruit-
ment. Tumor metabolism, particularly glycolysis and TCA cycle, are also associated with immune tolerance in breast cancer. (B) Therapeutic strategies to 
overcome immunotherapy resistance. Nanoparticles, photoimmunotherapy, and several drugs and inhibitors may target CAF, TAM, MDSC, and tumor 
metabolism for sensitizing breast cancer to immunotherapy
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associated with these neo-antigens enhance the capac-
ity to produce a successful anticancer therapy response 
[235]. Finally, the ability of T cells to penetrate the tumor 
site, the balance of TIME components and the equi-
librium between suppressive and activating cytokines 
within the TIME, modulation of metabolic pathways in 
immune and cancer cells, and the type of checkpoint pre-
sentation by tumor influence the T cell-mediated tumor 
elimination [236]. Thus, while TMB is correlated with 
improved outcomes following ICI administration, TMB 
must be considered in combination with several other 
parameters to optimize ICI response due to the intricacy 
of the immune response.

Epigenetic modification and immune tolerance
Changes in epigenetic alterations can impact the growth 
and development of healthy cells, potentially resulting in 
oncogenic transformation. Additionally, they are shown 
to affect immune cells’ aberrant function, normal stim-
ulation, and activation in the TIME. These alterations 
modulate the activation of various signaling pathways 
in immune cells, affecting tumor growth [237]. Histone 
modification enzymes including DNA methyltransfer-
ases (DNMTs), DNA demethylases, histone methyltrans-
ferases (HMTs), histone demethylases (HDMs), histone 
deacetylases (HDACs), histone acetyltransferases (HATs) 
contribute to carcinogenesis [238]. In addition, chroma-
tin remodeling, RNA modification, and noncoding RNAs 
regulate various biological processes crucial to cancer 
development. Zeste homology 2 (EZH2), the catalytic 
subunit of PRC2 provokes the release of LOXL4 in tumor 
cells to modulate the activation of macrophage into 
TAMs via miR-29b/miR-30d-LOXL4 axis in TNBC [239]. 
DNMT1 and EZH2 are linked with low tumor-infiltrating 
CD8+ T cells and poor patient outcomes [240]. EZH2 has 
also been demonstrated to play a key role in the devel-
opment of Treg cells, which dampen immunological 
responses. Furthermore, DNMT1 attenuates the tumor 
cell-derived Th1-type CXCL9 and CXCL10 expression, 
which influences effector T cell trafficking into the TME 
in ovarian cancer [241].

Similarly, in TNBC, another methyltransferase known 
as coactivator-associated arginine methyltransferase 
1 (CARM1) primarily targets BAF155 by blocking the 
interferon pathway, which reduces the host immune 
response [242]. Lysine-specific demethylase 1 (LSD1), a 
histone demethylase involved in epigenetic EMT regula-
tion, the acquisition of cancer stem cell markers (CSCs), 
and treatment resistance in breast cancer, could be a 
promising target for overcoming anti-PD-L1 therapy 
resistance. LSD1 is inversely correlated with CD8+ T cells 
in breast cancer, non-small-cell lung cancer, and mela-
noma [243]. By suppressing the MHC-I-producing genes, 
H2-D1, H2-K2 and LSD1 significantly impact the normal 

expression of MHC-I protein antigen in tumor cells. 
This enhances the exclusion of MHC-I identification by 
CD8+ T lymphocytes, which could result in immunologi-
cal escape [244]. The K acetyltransferase 6  A (KAT6A) 
acetylation of SMAD3 controls macrophage recruitment, 
metastasis, and immunosuppression. Combining anti-
PD-L1 therapy and KAT6A inhibitor reduces metasta-
ses and improves survival in TNBC xenograft-bearing 
mice [245]. TNBC is caused by hypermethylation of the 
DNA methyltransferase 1 (DNMT1) gene [246]. In addi-
tion, the histone demethylase, KDM5B has been shown 
to promote the migration, proliferation, and modulation 
of cellular physiology of tumor cells. Therefore, KDM5B 
silencing in breast cancer reprograms lipid metabolism to 
stimulate the migration and proliferation of breast cancer 
cells via activation of AMPK [247]. BRD4 inhibition has 
been found to induce macrophage reprogramming from 
the M2 to M1 phenotype and proinflammatory cytokine 
production, resulting in T cell activation. Similarly, this 
suppression was correlated with increased expression of 
MHC 1 genes by tumor cells and an increase in the CD8+ 
T cells/Tregs ratio [248].

Combination of immunotherapy and epi-drugs in 
immunotherapy
Extensive heterogeneity has impeded the management of 
TNBC by causing therapy resistance. Combination drug 
therapy (or CDT) has gained an improved pathological 
clinical response (PCR), progression-free survival (PFS), 
and overall survival (OS) in various malignancies [249]. 
Epigenetic drugs or epi-drugs are shown to have prom-
ising results in various solid cancers, including breast. 
Goswami et al. have uncovered an additional benefit of 
combining immunotherapy with EZH2 inhibitors [249]. 
They have shown that combination treatment might 
boost the therapeutic efficacy of antibodies that target 
CTLA-4 and decline the number of immune-suppressive 
cells [249]. In recent days, bromodomain and extra-ter-
minal (BET) inhibition have gained significant attraction 
in the treatment of breast cancer. Several BET inhibi-
tors, such as birabresib, molibresib, and mivebresib act 
by modulating the interaction between the enhancer and 
promoter for transcriptional repression [250]. Addition-
ally, new strategies that target chimeric chemicals (BET-
PROTACs) by BET-proteolysis have been explored in 
TNBC with encouraging results, even in BET-resistant 
cancers, and they bind a ubiquitin ligase while allosteri-
cally inhibiting BET bromodomains [251]. BET inhibitor 
resistance in TNBC is correlated with TAM infiltration 
in the TME [252]. Entinostat, a HDAC inhibitor aug-
ments the anti-tumor effects of IL-15 agonist and vac-
cine in 4T1 TNBC mouse models [253]. In addition, 
clinical trials investigating this epi-drug in combina-
tion with atezolizumab showed overall response rate of 
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10% (NCT02708680) [254]. A recent phase Ib trial with 
entinostat, nivolumab along with ipilimumab in hor-
mone receptor positive and advanced TNBC suggested 
the overall response rate of 25%, with 10% in hormone 
receptor positive and 40% in TNBC and recommended 
a further study of these combinations in phase II trial 
(NCT02453620) [255].

Furthermore, additional investigation is needed to 
determine whether ICI, along with different epi-drugs 
specifically targeting each type of immunosuppres-
sive cells may be more beneficial for breast cancer ther-
apy. These cutting-edge therapeutic strategies may be 
enhanced by developing the precisely targeted drug 
delivery systems for the treatment of breast cancer.

Therapeutic strategies to overcome 
immunotherapy resistance
Several groups have explored developing new therapeu-
tic strategies for immunotherapy tolerance. CMTM7, a 
PD-L1 regulator, is frequently deleted or downregulated 
in TNBC to cause therapeutic resistance. TNBC with 
higher CMTM7 expression is more sensitive to chemo-
therapy and immunotherapy [256]. This protein exhibits 
a positive correlation with immune cell infiltration and 
immune checkpoints. High CMTM7 protein level leads 
to a better therapeutic response of anti-PD1 or anti-PD-
L1 therapy. Hence, CMTM7 can be considered a pre-
dictive biomarker for immunotherapy response, and its 
expressions can be modulated to deal with immune tol-
erance in breast cancer [256]. PSME2, overexpressed in 
breast cancer, is involved in the proteasomal degradation 
of several proteins. It positively correlates with immune 
response and good prognosis in HER2+ breast cancer 
patients [257]. It promotes immune cell infiltration and 
checkpoint functions, improving immunotherapy out-
comes. This novel biomarker in breast cancer may also 
be modulated to overcome immune resistance [257]. Ear-
lier reports have revealed three TAAs: CD74, IRF1, and 
PSME2, associated with immune cell infiltration in breast 
cancer. These three TAAs are found to be overexpressed, 
amplified, or mutated in breast cancer and directed for 
developing mRNA vaccines in this cancer [258]. More-
over, HSP90 inhibitors reduce PD-L1 and PD-L2 surface 
expressions and increase CD8+ T cell infiltration in the 
tumor [259]. NDNB1182, an HSP90β inhibitor, blocks 
CDK4 and stimulates the expressions of IFN-medi-
ated genes. HSP90 inhibitor with immune checkpoint 
blockade is employed for treating immunotherapy-
resistant murine breast cancer [260]. Another natural 
product-based HSP90 inhibitor, 17-AAG, is found to 
be effective along with trastuzumab in treating trastu-
zumab-refractory HER2+ breast cancer [261]. However, 
it exhibited dose-limiting hepatotoxicity and gallbladder 
toxicity in preclinical study [262]. TNFα is also involved 

in trastuzumab resistance in HER2+ breast cancer. It 
upregulates the expression of MUC4, which interacts 
with HER2 through its MUC4β subunit and promotes 
tumor metastasis [263, 264]. MUC4 shelters the trastu-
zumab epitope in HER2 protein, blocking trastuzumab 
interaction [265]. Soluble TNFα-mediated inhibition 
of MUC4 downregulation modulates macrophages and 
NK cells to reverse immunosuppressive environment 
and trastuzumab resistance [266]. MSA2, a stimulator of 
interferon genes, boosts dendritic cell maturation and its 
antigen-presenting ability. It also promotes macrophage 
activation along with the release of chemokines and cyto-
kines [267]. Improved T cell migration with chemotaxis 
leads to a better innate and adaptive immune responses 
against breast cancer. NSA2 is used with YM101, an 
anti-TGFβ/PD-L1 antibody, to deal with immune resis-
tance in non-inflamed tumors [267]. Direct Akt activa-
tion stimulates the immune system in PD1 checkpoint 
blockade-resistant tumors to suppress their growth. The 
Akt downregulates Treg cells while upregulates CD4+ 
and CD8+ tumor-infiltrating lymphocytes (TILs), leading 
to IFNγ expression and thereby inducing an anti-tumor 
immune response [268]. A combination of anti-PD-L1 
monoclonal antibodies and PARP inhibitors are also 
effective in treating breast cancer patients [269]. Combi-
natorial treatment with albumin-paclitaxel and pembro-
lizumab also exhibits efficacy in TNBC cases exhibiting 
higher PD1 on T cells [270]. Moreover, determining the 
drug exposure of tumor tissue is important to understand 
the mechanism of immune tolerance. [68Ga]Ga-DK223-
PET has been developed using Gallium-68-labeled pep-
tide and investigated for monitoring tumor status with 
anti-PD-L1 therapy. This strategy helps to optimize 
immunotherapy for effective treatment [271]. A non-
invasive method has been developed for analyzing the 
blood-based TMB and copy number profiling to predict 
outcomes in breast cancer patients undergoing treatment 
with the combination of endocrine therapy along with 
CDK4/6 inhibitor, a standard treatment for HR+/HER2− 
metastatic breast cancer [272, 273]. Along with these 
approaches, there are several reports employing vari-
ous therapeutic strategies to overcome immunotherapy 
tolerance.

Targeting CAFs
CAFs have been shown to contribute to immunother-
apy tolerance significantly. Researchers have developed 
various therapeutic interventions to improve immuno-
therapy response by targeting the CAF population in the 
TME. Ford et al. have assessed the potential of CAF tar-
geting the NADPH oxidase 4 (NOX4) inhibition in sev-
eral cancers [274]. NOX4 is an enzyme involved in the 
differentiation of myoCAFs, and it’s inhibition reverts 
the myoCAFs into a quiescent phenotype and promotes 
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intra-tumoral infiltration of CD8+ T cells. NOX4 inhi-
bition has shown to overcome the CD8+ T cell exclu-
sion and potentiate anti-PD1 immunotherapy response 
using in vivo murine breast cancer model [274] (Fig. 2). 
GKT137831 is a NOX4/1 inhibitor reported to repress 
CAF-mediated immune tolerance [275, 276]. TGFβ1-
induced ECM remodelling in CAFs stimulate hepato-
cellular cancer cell invasion [277]. Upregulation of IL2 
in TGFβ+ and PDPN+ CAF populations sensitizes the 
trastuzumab-resistant HER2+ breast tumor [127, 278]. 
TGFβ inhibitors may also address immunotherapy 
resistance by targeting the CAF population [127]. The 
depletion of CAF is alternative strategy for improved 
immunotherapy efficacy. Depleting FAP+ CAF has been 
reported to boost the effectiveness of vaccines against 
cancer [117]. AMD3100 blocks the action of CAF-medi-
ated CXCL12 signaling and immunosuppression by tar-
geting CXCL12-CXCR4 interaction [115, 279]. However, 
targeting CAF has certain limitations due to the exis-
tence and insufficient understanding of various CAF sub-
populations; therefore, precisely targeting CAF is more 
challenging. Selective CAF subpopulations possess anti-
tumorigenic properties, leading to ineffective therapy 
[280]. Most CAF-targeted therapy could be combined 
with other immunotherapy for successful breast cancer 
treatment [281]. Lack of preclinical and clinical data is a 
limitation affecting CAF-targeted therapy [282].

Targeting TAMs
TAMs are reported to involve in immune resistance 
through various mechanisms. Several groups have 
explored many therapeutic options along with anti-
PD1/PD-L1 therapy [283, 284]. However, a detailed 
understanding of the heterogeneity of TAM needs to 
be explored further [285, 286]. Single-cell RNA seq has 
established the existence of both immunosuppressive and 
immunostimulatory TAM subpopulations at the tumor 
site. CD8+ T cell enrichment reduces memory T cells 
and inhibitory macrophages among various TAM popu-
lations [287]. Folate receptor 2 expressing macrophages 
(FOLR2+) is involved in the anticancer immune response. 
FOLR2+ macrophages induce higher CD8+ T cells and 
dendritic cell infiltration into the breast tumor niche 
[288]. In contrast, CX3CR1+CCR2−/low TAMs induce 
tumor-promoting TME [286]. TREM2+ macrophage sub-
population contributes to immune resistance via exhaust-
ing T cells [283]. The preclinical result of emactuzumab, 
a CSF1R antibody, established its efficacy in targeting 
the CD163+ TAM population in breast cancer [289]. 
BTH1677, an agonist of Dectin receptor and pembroli-
zumab treatment, exhibits repolarization of M2 macro-
phages, and a phase II trial is under process to study the 
efficacy of this combination therapy in metastatic TNBC 
(NCT02981303) [290]. PLX3397 (Pexidarnitib), another 

anti-CSF1R antibody, is also being investigated along 
with eribulin for the treatment of brain metastatic cases 
of breast cancer (NCT01596751) [291]. Although several 
reports are available on repolarization, reprogramming, 
and depletion of TAM in cancer, these strategies are not 
sufficient enough to overcome breast cancer immune 
resistance.

Targeting MDSC
A cryo-thermal treatment strategy has been developed 
to target metastatic tumors by activating innate and 
adaptive immune responses [292]. This therapy inhibits 
MDSCs by inducing their differentiation into antigen-
presenting cells. However, to improve the in vivo efficacy 
of this therapy, all-trans retinoid acid (ATRA) is employed 
to stimulate the maturation of functional MDSCs and 
inhibit immunosuppressive molecules [293]. This com-
bination treatment inhibits Th2 and Treg subpopulations 
while stimulating cytotoxic CD8+ T cells and NK cells to 
address MDSC-mediated immune tolerance [293]. More-
over, MDSC biogenesis may be targeted to reduce MDSC 
load and enhance immunotherapy response. Dihydrooro-
tate dehydrogenase inhibitors downregulate MDSC 
generation and maturation, improving immunotherapy 
efficacy in an in vivo TNBC model [294] (Fig. 4B). Bre-
quinar, an inhibitor of dihydroorotate dehydrogenase, has 
been reported to enhance the effectiveness of immune 
checkpoint inhibition in refractory HER2+ breast can-
cer [295]. ADAM12 is a metalloproteinase that is highly 
expressed in TNBC [296]. This protein is negatively cor-
related with the expression of MDSC genes. ADAM12 
inhibition suppresses MDSCs and improves T and B 
cell infiltration at the tumor site using an in vivo TNBC 
model. Combination of anti-PD1 and anti-CTLA4 ther-
apy has enhanced the efficacy of immunotherapy upon 
abrogation of ADAM12 using in vivo murine breast can-
cer model [297].

Modulation of metabolism
Tumor metabolism plays a crucial role in regulating 
tumor immunity and immunotherapy response. The high 
nutrient demand of cancer cells for their rapid growth 
and proliferation limits the availability of metabolic nutri-
ents for immune cells, leading to diminished immune 
activity [298]. Cancer cell metabolism suppresses T cell 
metabolism and its immune function. Tumor cells with 
high glycolytic activity affect the growth of T cells by 
depleting glucose in TME to impede T cell-mediated 
cytokine secretion. Targeting CTLA4 and PD-1 improve 
T cell metabolism and restore its immune function [28]. 
Amino acid metabolism is also crucial for the function 
of T cells [299]. TAM, especially M2 macrophages, are 
associated with metabolism-dependent immunosup-
pression. M2 macrophages reduce the glycolytic flux by 
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inducing PD-L1 expression to avoid the competition for 
oxidative phosphorylation. High PD-L1 expression in 
TAMs leads to immunosuppression [207, 300]. CSF1R 
inhibitors have the potential to block the transcriptional 
activation of genes involved in TAM-mediated immuno-
suppression [146]. M1 repolarization may also effectively 
suppress M2-dependent metabolic modulation of TIME 
[158]. Lipid metabolism also significantly affects ICI 
therapy by hampering T cell proliferation and activation. 
Metabolites may also act as a signaling agent to modu-
late immune activity [301]. Several reports are available 
on metabolic reprogramming for enhanced immuno-
therapy response. CD28 and CTLA4 are involved in 
competitive regulation of metabolism by binding with 
common receptors, CD80 and CD86. Highly abun-
dant CD28 exhibits a lower affinity to these receptors, 
while less abundant CTLA4 shows a higher affinity of it 
[302]. CD28 promotes glucose utilization through gly-
colysis in T cells, which is required for their activation 
[303]. CTLA4 inhibits CD28-mediated glucose metabo-
lism in T cells through Akt inhibition, impeding T cell 
activation [304]. Anti-CTLA4 therapy promotes CD28 
stimulation in antigen-presenting T cells and hampers 
glucose-dependent Treg cell stabilization [206]. Hence, 
CTLA4 inhibitors can be usefull in dealing with immune 
tolerance in breast cancer [305]. Tumor glycolysis can 
also be targeted to inhibit MDSCs infiltration-mediated 
immunosuppression in TME by LDHA knockdown in 
TNBC [306]. LDHA knockdown also destabilizes HIF1α 
to promote immune cell infiltration, improving immu-
notherapy outcomes in murine breast cancer [217, 307]. 
FX-11, an LDH inhibitor, is combined with anti-PD1 
therapy to induce cytotoxic CD8+ T cells and NK cells, 
resulting in improved antitumor immune response in 
TNBC [308]. It has been reported that CAIX inhibi-
tion can boost immune checkpoint inhibitor’s efficacy 
in TNBC. Preclinical data have shown that SLC-0111, a 
CAIX inhibitor, acts synergistically with immune check-
point inhibitors such as anti-PD1 or anti-CTLA4 to sup-
press tumor vascularization and metastasis in a TNBC 
xenograft model [309, 310].

Photodynamic therapy and photoimmunotherapy
Photodynamic therapy (PDT), which employs a pho-
tosensitizer to generate light-induced ROS, along with 
immunotherapy overcome the immune tolerance [311]. 
PDT-induced oxidative stress leads to calreticulin-
mediated necrosis of tumor cells and secretes dam-
age-associated molecular patterns (DAMPs) to cause 
antigen-presenting T cell activation [312]. PDT also 
selectively activates macrophages in a dose-dependent 
manner [313]. It stimulates macrophages to secrete lyso-
phosphatidylcholine (LPC), which forms macrophage 
activating factor (MAF) via T and B cell signaling to 

induce anticancer effects. PDT-induced phagocytosis 
in macrophages results in CD8+ T-cell activation [314]. 
PDT inhibits immunosuppressive TME along with its 
anti-tumor immune response [311]. It is used with immu-
nomodulatory agents to prevent metastasis through 
improved CD8+ T cell stimulation [315].

Phototherapy combined with immunotherapy (pho-
toimmunotherapy; PIT) is applied to escape the immu-
nosuppressive TME. PIT activates the system’s immune 
response to achieve long-term antitumor immunity. It 
also targets metastasized tumors and prevents breast 
cancer recurrence [316]. Two-dimensional black phos-
phorus (BP) nanostructures have gained popularity for 
their PIT applications. CpG oligodeoxynucleotide encap-
sulating NIR and ROS-sensitive BP nanovesicles (BPNVs) 
stimulates cytokine release by antigen-presenting cells 
(APCs) [317]. It generates NIR laser irradiation-respon-
sive ROS to release CpG at the tumor site. APCs take 
up the released CpG to activate the cytokine-mediated 
immune response against the tumor. The in vivo efficacy 
of this nanosystem is also established using in vivo 4T1 
tumor-bearing BALB/c mice models [318].

Photothermal therapy (PTT) can also be efficiently 
employed for potential tumor immunotherapy. A biomi-
metic NIR-responsive black phosphorus quantum dots 
(BPQDs) formulation is developed by coating with eryth-
rocyte membrane to achieve better tumor accumula-
tion and prolonged circulation [319]. It induces PTT for 
immune system activation in breast cancer to target met-
astatic and residual tumors. NIR irradiation leads to den-
dritic cell recruitment and elicits CD8+ T cell response 
at the tumor site. A combination of PD1 therapy and 
BPQDs exhibits more potent activity against primary 
and secondary cancers [319]. In addition, tumor-specific 
PTT is developed using cancer cell membrane coat-
ing for BPQDs [320]. PD-L1 combination with BPQDs 
improves dendritic cell maturation, and T cell-mediated 
anticancer immunity leads to better tumor cell recogni-
tion and tumor-specific lethal efficiency. This immuno-
therapy combination exhibits an immunological memory 
effect, resulting in more efficient action for recurrence 
and metastatic TNBC [320]. Another BPNP is fabricated 
using PEGylated hyaluronic acid (HABPs) and applied 
with PTT, PDT, and PIT. This formulation downregulates 
CD206 expression and upregulates CD86, leading to the 
repolarisation of TAMs into M1 macrophages. In vitro 
and in vivo studies demonstrated that combining PDT, 
PTT, and HABPs immunotherapy causes immunogenic 
cell death. This combination therapy secretes DAMPs 
for robust anticancer immunity through improved den-
dritic cell maturation and effector cell stimulation [321]. 
All these potential therapeutic strategies to overcome 
immune tolerance in breast cancer have been depicted in 
Fig. 4B.
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Regulation of tumor immune genes and immunotherapy 
response
Recent advances using in vivo CRISPR screens have 
identified various genes that make cancer cells evade 
anti-tumor immunity or regulate response to ICI ther-
apy. Deletion of these tumor immune genes improves 
the immunotherapy outcome. In vivo CRISPR knockout 
screening using a syngeneic TNBC mouse model has 
revealed the role of E3 ubiquitin ligase, Cop1, in regulat-
ing immunotherapy response. The first screen utilized a 
customized lentiviral guide RNA library called MuSCK, 
targeting 4500 genes involved in cancer progression and 
immune evasion. The library was transduced into 4T1 
cells and then injected into mice. A subsequent second-
ary screening with the MuSCK 2.0 library was performed 
to validate 79 hits. Cop1 deletion also improves the 
anti-tumor immune response by inhibiting chemokine 
secretion and macrophage infiltration in the TME [322]. 
Another in vivo CRISPR screen employed a guide RNA 
library, DrIM, targeting 2796 human disease-associated 
immune genes transduced into 4T1-Cas9 cells. Valida-
tion in immunocompetent and immunodeficient mice 
identified Ido1 and Lgals2 as immunotherapy targets in 
TNBC. These genes also promote TAMs and M2 polar-
ization [323]. Dong et al. conducted an unbiased genome-
wide CRISPR screening using a single guide RNA library 
called mouse knockout (MKO) library [324]. E0771 
murine TNBC cells expressing the ovalbumin tumor 
antigen were employed, and Cas9-expressing CD8+ T 
cells, transduced with the MKO library, were injected 
into mice with E0771-ovalbumin transplants. The screen-
ing has identified Dhx37 as a regulator of T cell function 
in the TME. The study established that Dhx37 dampens 
the CD8+ T cell activity by physically interacting with the 
NF-κB pathway in TNBC [324]. A pooled in vivo CRISPR 
screen approach has identified defective IFNγ signaling 
responsible for immunotherapy resistance. The protein 
tyrosine phosphatase PTPN2 deletion improves IFNγ-
mediated antigen presentation, leading to better immu-
notherapy response [325].

Combination therapy and nanoparticle-mediated 
immunotherapy
Immunostimulatory and immunomodulatory mol-
ecules must be precisely and efficiently delivered to the 
right target immune cells to employ cutting-edge thera-
peutic strategies in reshaping TIME without off-target 
effects. Moreover, nanocarrier-mediated combinatorial 
approaches are very promising to achieve better immu-
notherapy response. Kim et al. have shown the efficacy 
of SGT-53 to potentiate the action of anti-PD1 therapy 
using in vivo 4T1 breast cancer model [326]. SGT-53, a 
nanocarrier containing a plasmid encoding p53 gene, 
stimulates immune response and sensitize the resistant 

tumor to anti-PD1 antibody. Moreover, this combinato-
rial treatment also limits the immune-related adverse 
effect [326]. Combination of chemotherapy and immu-
notherapy is also investigated to improve the treatment 
outcome. Phase III trial was conducted with the atezoli-
zumab and nanoparticle albumin-bound paclitaxel 
(nab-paclitaxel) for the treatment of metastatic TNBC. 
The results have shown the improved efficacy of atezoli-
zumab in TNBC particularly in PD-L1+ tumors [327]. 
pH responsive micellar nanosystem has been developed 
for co-delivery of anti-PD-L1 siRNA and photosensi-
tizer. This nanocarrier elicits PDT-induced antitumor 
immune response and overcomes the immune tolerance 
in melanoma [328]. Kang et al. have investigated the 
potential of chemoimmunotherapy using nanoparticu-
late system [329]. Paclitaxel and imiquimod have been 
co-assembled for improved immunotherapy response as 
well as antitumor efficacy [329]. Nanomaterials have also 
been shown to possess an intrinsic ability to influence 
immune cells directly, including macrophage polarisa-
tion, thus becoming an appealing strategy to reprogram 
TAMs [330]. Various metallic nanoparticles are reported 
to activate immune response. Iron oxide nanoparticles 
have shown to encourage immunosuppressive M2 TAMs 
to repolarize into the pro-inflammatory M1 phenotype 
using in vivo murine breast cancer model [330]. In addi-
tion, a study has shown that gold and silver nanopar-
ticles can provoke an immune response in TAMs. Gold 
and silver nanoparticles contribute to TAM reprogram-
ming into M1-like phenotype through downregulating 
TNF-α and IL-10 and upregulating IL-12 [331]. Treg 
depletion or suppression of their immunosuppressive 
actions may potentially restore effector T cell antitumor 
activity, inhibiting tumor growth. Restoration of antitu-
mor immune response within the TIME is a challeng-
ing task. Recently, a nanoparticle-based MUC1 mRNA 
vaccine (NP) in combination with anti-CTLA-4 has 
shown to induce cytotoxic T lymphocyte response, lead-
ing to enhancement of antitumor activity as compared 
with vaccine or anti-CTLA4 alone in 4T1 mice models 
[94]. Understanding the drug targets and off-targets in 
immune and stromal cells requires robust drug delivery 
systems within the TIME. Therefore, selecting suitable 
delivery systems, dose optimization, drug combinations, 
and their pharmacokinetics and pharmacodynamics in 
TIME will open new avenues to overcome immunother-
apy resistance in breast cancer.

Conclusion and future perspective
Immunotherapy has therapeutic potential for treating 
breast cancer, resistance to conventional therapies. Sev-
eral lines of investigation are in progress for an in-depth 
understanding of the immune tolerance mechanisms to 
develop novel therapeutic approaches for combating 
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immune resistance. The study of intricate biological phe-
nomena has been revolutionized by single-cell omics 
tools, such as assay for transposase accessible chromatin 
(ATAC) sequencing and single-cell RNA, which enable 
detailed monitoring of the TME during immunotherapy. 
Incorporating single-cell CRISPR screens improves the 
resolution of biological event analysis, while concurrent 
spatial omics studies offer simultaneous spatial informa-
tion and protein expression. Researchers have carried out 
a parallel single-cell RNA-seq and T cell receptor (TCR) 
profiling using breast cancer patient samples to under-
stand the tumor microenvironmental changes follow-
ing anti-PD1 therapy [287]. Single-cell analysis revealed 
specific immune cell subsets linked with anti-PD-L1 
therapy in TNBC [332]. This study identified respond-
ers with an increased pool of CXCL13+ T cells by map-
ping alterations in immune cells after anti-PD-L1 and 
paclitaxel therapy using paired single-cell transcriptome, 
ATAC, and TCR sequencing [332]. Additionally, single-
cell RNA-seq has clarified the intricate biology of T cell 
exhaustion in the TME [333]. Algorithms facilitating 
co-registration of single-cell and spatial NGS data offer 
unprecedented insights into the co-evolution of immune 
cell clones. They may aid in identifying targets for com-
bination therapy in cancer immunotherapy regimens. 
Therefore, a detailed understanding of the tumor micro-
environmental changes during immunotherapy through 
single-cell omics, multi-omics, or multiplexed in situ spa-
tial protein profiling may aid in developing novel thera-
peutic strategies to overcome immune tolerance in breast 
cancer.

The intricate interplay between CAF and TAM is cru-
cial in determining immune therapy efficacy with the 
TIME. For instance, a pan cancer analysis revealed iCAFs 
stimulate cancer cell proliferation, epithelial-mesen-
chymal transition (EMT), and the create an immuno-
suppressive TIME in breast cancer patients receiving 
anti-PD1 immunotherapy [334]. Similarly, Li et al. have 
characterized two CAFs clusters A and B where cluster 
B is abundant with immunosuppressive macrophages 
and resulted in poor overall survival than cluster A [335]. 
TAM depletion by sequential administration of TAM 
targeting T cells followed by cancer targeting T cells, 
resulting in reduction in tumor size and longer survival 
in mouse ovarian cancer model [336]. CAF-derived IL-6 
contributes to immune therapy resistance and inhibi-
tion of the IL-6-STAT3/Akt-PD-L1 axis resensitizes 
to immune therapy in breast cancer patients [337]. In 
addition, MDSC is an essential component of the TME 
to be considered in immunotherapy outcomes. Tumor 
metabolism, gaining attention in cancer research, is also 
linked to immunotherapy resistance. Thus, developing 
strategies targeting CAF and TAM regulated core tran-
scriptional networks and its heterogeneity could provide 

better immune therapy-based strategy for the treatment 
of breast cancer. Immune therapy resistance is also con-
ferred by epigenetic modifications in various cells within 
the TIME. Particularly immune cells are regulated epige-
netically in modulating immune cell function and devel-
oping immune therapy resistance. Combining epi-drugs 
along with various immune therapy-based approaches 
could provide better disease-free survival in breast can-
cer patients.

Nanotechnology is also being used to reprogram TME 
for immune stimulation. Nanoparticles can contribute 
to better drug uptake, improved CAF reprogramming, 
and better T cell infiltration, leading to more effective 
immunotherapy. PDT, PIT and PTT improves the immu-
notherapy efficacy thereby providing better therapeutic 
outcomes in breast cancer. Combining nanoparticles with 
photodynamic immunotherapy ablates TAM metabolism 
in TNBC [338]. Further addressing PDT related adverse 
effects in terms of structural and biological aspect while 
combining with immunotherapy could improve clinical 
manifestations in breast cancer treatment [339].

Moreover, non-specific immunostimulation by immu-
notherapy mimics autoimmune disorders and causes sev-
eral immune-related adverse effects. Minor toxicity may 
be managed by temporary withdrawal of immunotherapy 
while it must be discontinued in case of severe toxicity. 
Different immunotherapies have their specific immune-
related adverse effects. Along with immunotherapy resis-
tance, addressing immune-related other adverse effects 
is also crucial for successful immunotherapy outcome 
[340]. All these factors should be considered to control 
the TIME for a better immunotherapeutic outcome.

Additionally, organ-specific differences in TME may 
cause different immune-resistant mechanisms and 
immune therapy responses [341]. Hence, we must under-
stand the organ-specific TME to establish more precise 
therapy depending on the immune tolerance mechanism. 
Immuno-subtyping may be a successful approach to deal 
with immunotherapy failure. It will aid in understand-
ing tumor heterogeneity among breast cancer patients 
[342]. Moreover, single-cell and spatial transcriptomics 
studies may detangle the complexity of TME-mediated 
immunomodulation. These will be beneficial to explore 
biomarkers for immunotherapy response prediction and 
targets for improved immunotherapy outcomes [343]. 
Advanced therapeutic strategies, including personalized 
immunotherapy and gene editing based therapeutics, 
may be helpful to modulate different TME components 
for enhanced immunotherapy efficacy.

In conclusion, various components of TME such as 
CAFs, TAMs, DCs and MDSCs are involved in TIME 
modulation, leading to immunotherapy resistance. In 
this review, we have highlighted various immunotherapy-
based approaches and stromal-immune interplay such as 
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CAF, TAM and MDSC-mediated immune tolerance in 
breast cancer. Moreover, alteration of tumor metabolism 
leads to immunotherapy failure. Furthermore, targeting 
these and their metabolic regulation with combination 
therapy could overcome immune resistance and enhance 
the efficacy of immunotherapy in breast cancer. This 
review emphasizes the therapeutic approaches to over-
come breast cancer immune resistance in combination 
with immunotherapy such as photodynamic, photoim-
munotherapy, epi-drug and nanoparticle mediated drug 
delivery. The comprehensive strategies emphasize that 
the resistance to immunotherapy needs to be further 
studied to develop therapeutic regimens for the success-
ful overcome of immunotherapy resistant breast cancers.
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