Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.
Article
PubMed Central
PubMed
Google Scholar
DeAngeles LM. Brain Tumors. N Engl J Med. 2001;344:114–23.
Article
Google Scholar
Hegi ME, Rajakannu P, Weller M. Epidermal growth factor receptor: a re-emerging target in glioblastoma. Curr Opin Neurol. 2012;25:774–9.
Article
CAS
PubMed
Google Scholar
Akhavan D, Cloughesy TF, Mischel PS. mTOR signaling in glioblastoma: lessons learned from bench to bedside. Neuro Oncol. 2010;12:882–9.
Article
CAS
PubMed Central
PubMed
Google Scholar
Tanaka K, Babic I, Nathanson D, Akhavan D, Guo D, Gini B, et al. Oncogenic EGFR signaling activates an mTORC2-NF-κB pathway that promotes chemotherapy resistance. Cancer Discov. 2011;1:524–38.
Article
CAS
PubMed Central
PubMed
Google Scholar
Huang PH, Miraldi ER, Xu AM, Kundukulam VA, Del Rosario AM, Flynn RA, et al. Phosphotyrosine signaling analysis of site-specific mutations on EGFRvIII identifies determinants governing glioblastoma cell growth. Mol Biosyst. 2010;6:1227–37.
Article
CAS
PubMed Central
PubMed
Google Scholar
Katanasaka Y, Kodera Y, Kitamura Y, Morimoto T, Tamura T, Koizumi F. Epidermal growth factor receptor variant type III markedly accelerates angiogenesis and tumor growth via inducing c-myc mediated angiopoietin-like 4 expression in malignant glioma. Mol Cancer. 2013;12:31.
Article
CAS
PubMed Central
PubMed
Google Scholar
Li L, Dutra A, Pak E, Labrie JE, Gerstein RM, Pandolfi PP, et al. EGFRvIII expression and PTEN loss synergistically induce chromosomal instability and glial tumors. Neuro Oncol. 2009;11:9–21.
Article
PubMed Central
PubMed
Google Scholar
Vogt PK, Hart JR. Akt demoted in glioblastoma. Sci Signal. 2009;2:26.
Article
Google Scholar
Jhanwar-Uniyal M, Jeevan D, Neil J, Shannon C, Albert L, Murali R. Deconstructing mTOR complexes in regulation of Glioblastoma Multiforme and its stem cells. Adv Biol Regul. 2013;53:202–10.
Article
CAS
PubMed
Google Scholar
Sabatini DM. mTOR and cancer: insights into a complex relationship. Nat Rev Cancer. 2006;6:729–34.
Article
CAS
PubMed
Google Scholar
Adler EM. 2010: Signaling Breakthroughs of the Year. Sci Signal. 2011;4:eg1.
CAS
PubMed
Google Scholar
Angliker N, Rüegg MA. In vivo evidence for mTORC2-mediated actin cytoskeleton rearrangement in neurons. Bioarchitecture. 2013;3:113–8.
Article
PubMed Central
PubMed
Google Scholar
Thomanetz V, Angliker N, Cloëtta D, Lustenberger RM, Schweighauser M, Oliveri F, et al. Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology. J Cell Biol. 2013;201:293–308.
Article
CAS
PubMed Central
PubMed
Google Scholar
Masri J, Bernath A, Martin J, Jo OD, Vartanian R, Funk A, et al. mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor. Cancer Res. 2007;67:11712–20.
Article
CAS
PubMed
Google Scholar
Gulati N, Karsy M, Albert L, Murali R, Jhanwar-Uniyal M. Involvement of mTORC1 and mTORC2 in regulation of glioblastoma multiforme growth and motility. Int J Oncol. 2009;35:731–40.
CAS
PubMed
Google Scholar
Masui K, Tanaka K, Akhavan D, Babic I, Gini B, Matsutani T, et al. mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab. 2013;18:726–39.
Article
CAS
PubMed
Google Scholar
Masui K, Cavenee WK, Mischel PS. mTORC2 in the center of cancer metabolic reprogramming. Trends Endocrinol Metab. 2014;25:364–73.
Article
CAS
PubMed
Google Scholar
Schonbrun M, Kolesnikov M, Kupiec M, Weisman R. TORC2 is required to maintain genome stability during S phase in fission yeast. J Biol Chem. 2013;288:19649–60.
Article
CAS
PubMed Central
PubMed
Google Scholar
Shimada K, Filipuzzi I, Stahl M, Helliwell SB, Studer C, Hoepfner D, et al. TORC2 signaling pathway guarantees genome stability in the face of DNA strand breaks. Mol Cell. 2013;51:829–39.
Article
CAS
PubMed
Google Scholar
Weisman R, Cohen A, Gasser SM. TORC 2 — a new player in genome stability. EMBO Mol Med. 2014;6:995–1003.
Article
CAS
PubMed Central
PubMed
Google Scholar
Selvarajah J, Elia A, Carroll VA, Moumen A. DNA damage-induced S and G2 / M cell cycle arrest requires mTORC2-dependent regulation of Chk1. Oncotarget. 2014;6:427–40.
PubMed Central
Google Scholar
Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12:21–35.
Article
CAS
PubMed Central
PubMed
Google Scholar
Abraham RT. PI 3-kinase related kinases : “big” players in stress-induced signaling pathways. DNA Repair (Amst). 2004;3:883–7.
Article
CAS
Google Scholar
Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307:1098–101.
Article
CAS
PubMed
Google Scholar
Sauer E, Imseng S, Maier T, Hall MN. Conserved sequence motifs and the structure of the mTOR kinase domain. Biochem Soc Trans. 2013;41:889–95.
Article
CAS
PubMed
Google Scholar
Laplante M, Sabatini DM. Regulation of mTORC1 and its impact on gene expression at a glance. J Cell Sci. 2013;126:1713–9.
Article
CAS
PubMed Central
PubMed
Google Scholar
Jacinto E, Loewith R, Schmidt A, Lin S, Rüegg MA, Hall A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004;6:1122–8.
Article
CAS
PubMed
Google Scholar
Sarbassov DD, Ali SM, Kim D-H, Guertin DA, Latek RR, Erdjument-Bromage H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 2004;14:1296–302.
Article
CAS
PubMed
Google Scholar
Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell. 2006;127:125–37.
Article
CAS
PubMed
Google Scholar
Ikenoue T, Inoki K, Yang Q, Zhou X, Guan K-L. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J. 2008;27:1919–31.
Article
CAS
PubMed Central
PubMed
Google Scholar
Huang W, Zhu PJ, Zhang S, Zhou H, Stoica L, Galiano M, et al. mTORC2 controls actin polymerization required for consolidation of long-term memory. Nat Neurosci. 2013;16:441–8.
Article
CAS
PubMed Central
PubMed
Google Scholar
Goncharova E. a., James ML, Kudryashova T V., Goncharov D a., Krymskaya VP. Tumor Suppressors TSC1 and TSC2 Differentially Modulate Actin Cytoskeleton and Motility of Mouse Embryonic Fibroblasts. PLoS One. 2014;9:e111476.
Article
PubMed Central
PubMed
Google Scholar
Apsel B, Blair JA, Gonzalez B, Nazif TM, Feldman ME, Aizenstein B, et al. Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat Chem Biol. 2008;4:691–9.
Article
CAS
PubMed Central
PubMed
Google Scholar
Guo D, Prins RM, Dang J, Kuga D, Iwanami A, Soto H, et al. EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Sci Signal. 2009;2:ra82.
Article
PubMed Central
PubMed
Google Scholar
Feng Y, Walsh CA. The many faces of filamin : A versatile molecular scaffold for cell motility and signalling. Nat Cell Biol. 2004;6:1034–8.
Article
CAS
PubMed
Google Scholar
Betapudi V. Myosin II, motor proteins with different functions determine the fate of lamellipodia extension during cell spreading. PLoS One. 2010;5, e8560.
Article
PubMed Central
PubMed
Google Scholar
Nakamura F, Stossel TP, Hartwig JH. The filamins: Organizers of cell structure and function. Cell Adh Migr. 2011;5:160–9.
Article
PubMed Central
PubMed
Google Scholar
Pearce LR, Huang X, Boudeau J, Pawłowski R, Wullschleger S, Deak M, et al. Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J. 2007;405:513–22.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yip CK, Murata K, Walz T, Sabatini DM, Kang SA. Structure of the Human mTOR Complex I and Its Implications for Rapamycin Inhibition. Mol Cell. 2010;38:768–74.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ai J, Huang H, Lv X, Tang Z, Chen T, Duan W, et al. FLNA and PGK1 are Two Potential Markers for Progression in Hepatocellular Carcinoma. Cell Physiol Biochem. 2011;27:207–16.
Article
CAS
PubMed
Google Scholar
Tian HM, Liu XH, Han W, Zhao LL, Yuan B, Yuan CJ. Differential expression of filamin A and its clinical significance in breast cancer. Oncol Lett. 2013;6:681–6.
CAS
PubMed Central
PubMed
Google Scholar
Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol. 2007;170:1445–53.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yue J, Huhn S, Shen Z. Complex roles of filamin-A mediated cytoskeleton network in cancer progression. Cell Biosci. 2013;3:7.
Article
CAS
PubMed Central
PubMed
Google Scholar
MacPherson M, Fagerholm SC. Filamin and filamin-binding proteins in integrin-regulation and adhesion. Focus on: “FilaminA is required for vimentin-mediated cell adhesion and spreading”. Am J Physiol Cell Physiol. 2010;298:C206–8.
Article
CAS
PubMed Central
PubMed
Google Scholar
Stossel TP, Condeelis J, Cooley L, Hartwig JH, Schleicher M, Shapiro SS. Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol. 2001;2:138–45.
Article
CAS
PubMed
Google Scholar
Savoy RM, Ghosh PM. The dual role of filamin a in cancer: can’t live with (too much of) it, can’t live without it. Endocr Relat Cancer. 2013;20:R341–56.
Article
CAS
PubMed Central
PubMed
Google Scholar
He Y, Li D, Cook SL, Yoon M-S, Kapoor A, Rao CV, et al. Mammalian target of rapamycin and Rictor control neutrophil chemotaxis by regulating Rac/Cdc42 activity and the actin cytoskeleton. Mol Biol Cell. 2013;24:3369–80.
Article
CAS
PubMed Central
PubMed
Google Scholar
García E, Stracher A, Jay D. Calcineurin dephosphorylates the C-terminal region of filamin in an important regulatory site: a possible mechanism for filamin mobilization and cell signaling. Arch Biochem Biophys. 2006;446:140–50.
Article
PubMed
Google Scholar
Woo MS, Ohta Y, Rabinovitz I, Stossel P, Blenis J, Stossel TP. Ribosomal S6 Kinase (RSK) regulates phosphorylation of filamin a on an important regulatory site. Mol Cell Biol. 2004;24:3025–35.
Article
CAS
PubMed Central
PubMed
Google Scholar
Vadlamudi RK, Li F, Adam L, Nguyen D, Ohta Y, Stossel TP, et al. Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1. Nat Cell Biol. 2002;4:681–90.
Article
CAS
PubMed
Google Scholar
Tigges U, Koch B, Wissing J, Jockusch BM, Ziegler WH. The F-actin cross-linking and focal adhesion protein filamin A is a ligand and in vivo substrate for protein kinase Cα. J Biol Chem. 2003;278:23561–9.
Article
CAS
PubMed
Google Scholar
Zhang J, Neal J, Lian G, Hu J, Lu J, Sheen V. Filamin A regulates neuronal migration through brefeldin A-inhibited guanine exchange factor 2-dependent Arf1 activation. J Neurosci. 2013;33:15735–46.
Article
CAS
PubMed Central
PubMed
Google Scholar
McDonough WS, Tran NL, Berens ME. Regulation of glioma cell migration by seri ne-phosphorylated P311. Neoplasia. 2005;7:862–72.
Article
CAS
PubMed Central
PubMed
Google Scholar
Jang HS, Lal S, Greenwood J. a. Calpain 2 is required for glioblastoma cell invasion: regulation of matrix metalloproteinase 2. Neurochem Res. 2010;35:1796–804.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lal S, La Du J, Tanguay RL, Greenwood JA. Calpain 2 is required for the invasion of glioblastoma cells in the zebrafish brain microenvironment. J Neurosci Res. 2012;90:769–81.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sadanandam A, Lyssiotis CA, Homicsko K, Collisson EA, Gibb WJ, Wullschleger S, et al. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat Med. 2013;19:619–25.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhang K, Zhu T, Gao D, Zhang Y, Zhao Q, Liu S, et al. Filamin A expression correlates with proliferation and invasive properties of human metastatic melanoma tumors: implications for survival in patients. J Cancer Res Clin Oncol. 2014;140:1913–26.
Article
CAS
PubMed
Google Scholar
Alper O, Stetler-Stevenson WG, Harris LN, Leitner WW, Ozdemirli M, Hartmann D, et al. Novel anti-filamin-A antibody detects a secreted variant of filamin-A in plasma from patients with breast carcinoma and high-grade astrocytoma. Cancer Sci. 2009;100:1748–56.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhang L, Bartley CM, Gong X, Hsieh LS, Lin TV, Feliciano DM, et al. MEK-ERK1/2-Dependent FLNA Overexpression Promotes Abnormal Dendritic Patterning in Tuberous Sclerosis Independent of mTOR. Neuron. 2014;84:78–91.
Article
CAS
PubMed
Google Scholar
Sellers JR. Myosins: a diverse superfamily. Biochim Biophys Acta - Mol Cell Res. 2000;1496:3–22.
Article
CAS
Google Scholar
Betapudi V. Life without double-headed non-muscle myosin II motor proteins. Front Chem. 2014;2:45.
Article
PubMed Central
PubMed
Google Scholar
Dulyaninova NG, Bresnick AR. The heavy chain has its day: Regulation of myosin-II assembly. Bioarchitecture. 2013;3:77–85.
Article
PubMed Central
PubMed
Google Scholar
Dulyaninova NG, House RP, Betapudi V, Bresnick AR. Myosin-IIA heavy-chain phosphorylation regulates the motility of MDA-MB-231 carcinoma cells. Mol Biol Cell. 2007;18:3144–55.
Article
CAS
PubMed Central
PubMed
Google Scholar
Beadle C, Assanah MC, Monzo P, Vallee R, Rosenfeld SS, Canoll P. The role of myosin II in glioma invasion of the brain. Mol Biol Cell. 2008;19:3357–68.
Article
CAS
PubMed Central
PubMed
Google Scholar