Kyle RA, Rajkumar SV: Multiple myeloma. N Engl J Med. 2004, 351: 1860-1873. 10.1056/NEJMra041875
Article
CAS
PubMed
Google Scholar
Litchfield DW: Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J. 2003, 369: 1-15. 10.1042/BJ20021469
Article
PubMed Central
CAS
PubMed
Google Scholar
Trembley JH, Wang G, Unger G, Slaton J, Ahmed K: Protein kinase CK2 in health and disease: CK2: a key player in cancer biology. Cell Mol Life Sci. 2009, 66: 1858-1867. 10.1007/s00018-009-9154-y
Article
PubMed Central
CAS
PubMed
Google Scholar
Guerra B, Issinger OG: Protein kinase CK2 in human diseases. Curr Med Chem. 2008, 15: 1870-1886. 10.2174/092986708785132933
Article
CAS
PubMed
Google Scholar
Ahmad KA, Wang G, Unger G, Slaton J, Ahmed K: Protein kinase CK2--a key suppressor of apoptosis. Adv Enzyme Regul. 2008, 48: 179-187. 10.1016/j.advenzreg.2008.04.002
Article
PubMed Central
CAS
PubMed
Google Scholar
Piazza FA, Ruzzene M, Gurrieri C, Montini B, Bonanni L, Chioetto G, Di Maira G, Barbon F, Cabrelle A, Zambello R, Adami F, Trentin L, Pinna LA, Semenzato G: Multiple myeloma cell survival relies on high activity of protein kinase CK2. Blood. 2006, 108: 1698-1707. 10.1182/blood-2005-11-013672
Article
CAS
PubMed
Google Scholar
Shao J, Prince T, Hartson SD, Matts RL: Phosphorylation of serine 13 is required for the proper function of the Hsp90 co-chaperone, Cdc37. J Biol Chem. 2003, 278: 38117-38120. 10.1074/jbc.C300330200
Article
CAS
PubMed
Google Scholar
Miyata Y, Nishida E: CK2 controls multiple protein kinases by phosphorylating a kinase-targeting molecular chaperone, Cdc37. Mol Cell Biol. 2004, 24: 4065-4074. 10.1128/MCB.24.9.4065-4074.2004
Article
PubMed Central
CAS
PubMed
Google Scholar
Gray PJ, Prince T, Cheng J, Stevenson MA, Calderwood SK: Targeting the oncogene and kinome chaperone CDC37. Nat Rev Cancer. 2008, 8: 491-495. 10.1038/nrc2420
Article
PubMed Central
CAS
PubMed
Google Scholar
Mandal AK, Lee P, Chen JA, Nillegoda N, Heller A, DiStasio S, Oen H, Victor J, Nair DM, Brodsky JL, Caplan AJ: Cdc37 has distinct roles in protein kinase quality control that protect nascent chains from degradation and promote posttranslational maturation. J Cell Biol. 2007, 176: 319-328. 10.1083/jcb.200604106
Article
PubMed Central
CAS
PubMed
Google Scholar
Bandhakavi S, McCann RO, Hanna DE, Glover CV: A positive feedback loop between protein kinase CKII and Cdc37 promotes the activity of multiple protein kinases. J Biol Chem. 2003, 278: 2829-2836. 10.1074/jbc.M206662200
Article
CAS
PubMed
Google Scholar
Miyata Y, Yahara I: The 90-kDa heat shock protein, HSP90, binds and protects casein kinase II from self-aggregation and enhances its kinase activity. J Biol Chem. 1992, 267: 7042-7047.
CAS
PubMed
Google Scholar
Miyata Y: Protein kinase CK2 in health and disease: CK2: the kinase controlling the Hsp90 chaperone machinery. Cell Mol Life Sci. 2009, 66: 1840-1849. 10.1007/s00018-009-9152-0
Article
CAS
PubMed
Google Scholar
Gray PJ, Stevenson MA, Calderwood SK: Targeting Cdc37 inhibits multiple signaling pathways and induces growth arrest in prostate cancer cells. Cancer Res. 2007, 67: 11942-11950. 10.1158/0008-5472.CAN-07-3162
Article
CAS
PubMed
Google Scholar
Smith JR, Clarke PA, de Billy E, Workman P: Silencing the cochaperone CDC37 destabilizes kinase clients and sensitizes cancer cells to HSP90 inhibitors. Oncogene. 2009, 28: 157-169. 10.1038/onc.2008.380
Article
PubMed Central
CAS
PubMed
Google Scholar
Patel D, Shukla S, Gupta S: Apigenin and cancer chemoprevention: progress, potential and promise (review). Int J Oncol. 2007, 30: 233-245.
CAS
PubMed
Google Scholar
Shukla S, Gupta S: Apigenin-induced cell cycle arrest is mediated by modulation of MAPK, PI3K-Akt, and loss of cyclin D1 associated retinoblastoma dephosphorylation in human prostate cancer cells. Cell Cycle. 2007, 6: 1102-1114. 10.4161/cc.6.9.4146
Article
CAS
PubMed
Google Scholar
Shukla S, Gupta S: Suppression of constitutive and tumor necrosis factor alpha-induced nuclear factor (NF)-kappaB activation and induction of apoptosis by apigenin in human prostate carcinoma PC-3 cells: correlation with down-regulation of NF-kappaB-responsive genes. Clin Cancer Res. 2004, 10: 3169-3178. 10.1158/1078-0432.CCR-03-0586
Article
CAS
PubMed
Google Scholar
Chen D, Landis-Piwowar KR, Chen MS, Dou QP: Inhibition of proteasome activity by the dietary flavonoid apigenin is associated with growth inhibition in cultured breast cancer cells and xenografts. Breast Cancer Res. 2007, 9: R80-
Article
PubMed Central
PubMed
Google Scholar
Way TD, Kao MC, Lin JK: Degradation of HER2/neu by apigenin induces apoptosis through cytochrome c release and caspase-3 activation in HER2/neu-overexpressing breast cancer cells. FEBS Lett. 2005, 579: 145-152. 10.1016/j.febslet.2004.11.061
Article
CAS
PubMed
Google Scholar
Kim JS, Eom JI, Cheong JW, Choi AJ, Lee JK, Yang WI, Min YH: Protein kinase CK2alpha as an unfavorable prognostic marker and novel therapeutic target in acute myeloid leukemia. Clin Cancer Res. 2007, 13: 1019-1028. 10.1158/1078-0432.CCR-06-1602
Article
CAS
PubMed
Google Scholar
Yu X, Guo ZS, Marcu MG, Neckers L, Nguyen DM, Chen GA, Schrump DS: Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J Natl Cancer Inst. 2002, 94: 504-513.
Article
CAS
PubMed
Google Scholar
Sarno S, Reddy H, Meggio F, Ruzzene M, Davies SP, Donella-Deana A, Shugar D, Pinna LA: Selectivity of 4, 5, 6, 7-tetrabromobenzotriazole, an ATP site-directed inhibitor of protein kinase CK2 ('casein kinase-2'). FEBS Lett. 2001, 496: 44-48. 10.1016/S0014-5793(01)02404-8
Article
CAS
PubMed
Google Scholar
Kawano M, Hirano T, Matsuda T, Taga T, Horii Y, Iwato K, Asaoku H, Tang B, Tanabe O, Tanaka H: Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature. 1988, 332: 83-85. 10.1038/332083a0
Article
CAS
PubMed
Google Scholar
Yi X, Wei W, Wang SY, Du ZY, Xu YJ, Yu XD: Histone deacetylase inhibitor SAHA induces ERalpha degradation in breast cancer MCF-7 cells by CHIP-mediated ubiquitin pathway and inhibits survival signaling. Biochem Pharmacol. 2008, 75: 1697-1705. 10.1016/j.bcp.2007.10.035
Article
CAS
PubMed
Google Scholar
Mühlenberg T, Zhang Y, Wagner AJ, Grabellus F, Bradner J, Taeger G, Lang H, Taguchi T, Schuler M, Fletcher JA, Bauer S: Inhibitors of deacetylases suppress oncogenic KIT signaling, acetylate HSP90, and induce apoptosis in gastrointestinal stromal tumors. Cancer Res. 2009, 69: 6941-6950. 10.1158/0008-5472.CAN-08-4004
Article
PubMed Central
PubMed
Google Scholar
Ahmad KA, Harris NH, Johnson AD, Lindvall HC, Wang G, Ahmed K: Protein kinase CK2 modulates apoptosis induced by resveratrol and epigallocatechin-3-gallate in prostate cancer cells. Mol Cancer Ther. 2007, 6: 1006-1012. 10.1158/1535-7163.MCT-06-0491
Article
CAS
PubMed
Google Scholar
Lewis J, Devin A, Miller A, Lin Y, Rodriguez Y, Neckers L, Liu ZG: Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation. J Biol Chem. 2000, 275: 10519-10526. 10.1074/jbc.275.14.10519
Article
CAS
PubMed
Google Scholar
Festjens N, Vanden Berghe T, Cornelis S, Vandenabeele P: RIP1, a kinase on the crossroads of a cell's decision to live or die. Cell Death Differ. 2007, 14: 400-410. 10.1038/sj.cdd.4402085
Article
CAS
PubMed
Google Scholar
Declercq W, Vanden Berghe T, Vandenabeele P: RIP kinases at the crossroads of cell death and survival. Cell. 2009, 138: 229-232. 10.1016/j.cell.2009.07.006
Article
CAS
PubMed
Google Scholar
Christofferson DE, Yuan J: Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol. 2009, 22: 1-6.
Google Scholar
Lee SH, Ryu JK, Lee KY, Woo SM, Park JK, Yoo JW, Kim YT, Yoon YB: Enhanced anti-tumor effect of combination therapy with gemcitabine and apigenin in pancreatic cancer. Cancer Lett. 2008, 259: 39-49. 10.1016/j.canlet.2007.09.015
Article
CAS
PubMed
Google Scholar
Park J, Kim SH, Kim TS: Inhibition of interleukin-4 production in activated T cells via down-regulation of NF-AT DNA binding activity by apigenin, a flavonoid present in dietary plants. Immunol Lett. 2006, 103: 108-114. 10.1016/j.imlet.2005.10.002
Article
CAS
PubMed
Google Scholar
Nicholas C, Batra S, Vargo MA, Voss OH, Gavrilin MA, Wewers MD, Guttridge DC, Grotewold E, Doseff AI: Apigenin blocks lipopolysaccharide-induced lethality in vivo and proinflammatory cytokines expression by inactivating NF-kappaB through the suppression of p65 phosphorylation. J Immunol. 2007, 179: 7121-7127.
Article
CAS
PubMed
Google Scholar
Kim EK, Kwon KB, Song MY, Han MJ, Lee JH, Lee YR, Lee JH, Ryu DG, Park BH, Park JW: Flavonoids protect against cytokine-induced pancreatic beta-cell damage through suppression of nuclear factor kappaB activation. Pancreas. 2007, 35: e1-9.
Article
PubMed
Google Scholar
Cory S, Adams JM: The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002, 2: 647-656. 10.1038/nrc883
Article
CAS
PubMed
Google Scholar
Derenne S, Monia B, Dean NM, Taylor JK, Rapp MJ, Harousseau JL, Bataille R, Amiot M: Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-x(L) is an essential survival protein of human myeloma cells. Blood. 2002, 100: 194-199. 10.1182/blood.V100.1.194
Article
CAS
PubMed
Google Scholar
Zhang B, Gojo I, Fenton RG: Myeloid cell factor-1 is a critical survival factor for multiple myeloma. Blood. 2002, 99: 1885-1893. 10.1182/blood.V99.6.1885
Article
CAS
PubMed
Google Scholar
Akgul C: Mcl-1 is a potential therapeutic target in multiple types of cancer. Cell Mol Life Sci. 2009, 66: 1326-1336. 10.1007/s00018-008-8637-6
Article
CAS
PubMed
Google Scholar
Vrana JA, Cleaveland ES, Eastman A, Craig RW: Inducer-and cell type-specific regulation of antiapoptotic MCL1 in myeloid leukemia and multiple myeloma cells exposed to differentiation-inducing or microtubule-disrupting agents. Apoptosis. 2006, 11: 1275-1288. 10.1007/s10495-006-7787-y
Article
CAS
PubMed
Google Scholar
Wuillème-Toumi S, Robillard N, Gomez P, Moreau P, Le Gouill S, Avet-Loiseau H, Harousseau JL, Amiot M, Bataille R: Mcl-1 is overexpressed in multiple myeloma and associated with relapse and shorter survival. Leukemia. 2005, 19: 1248-1252. 10.1038/sj.leu.2403784
Article
PubMed
Google Scholar
Domina AM, Vrana JA, Gregory MA, Hann SR, Craig RW: MCL1 is phosphorylated in the PEST region and stabilized upon ERK activation in viable cells, and at additional sites with cytotoxic okadaic acid or taxol. Oncogene. 2004, 23: 5301-5315. 10.1038/sj.onc.1207692
Article
CAS
PubMed
Google Scholar
Le Gouill S, Podar K, Harousseau JL, Anderson KC: Mcl-1 regulation and its role in multiple myeloma. Cell Cycle. 2004, 3: 1259-1262. 10.4161/cc.3.10.1196
Article
CAS
PubMed
Google Scholar
Kim SH, Ricci MS, El-Deiry WS: Mcl-1: a gateway to TRAIL sensitization. Cancer Res. 2008, 68: 2062-2064. 10.1158/0008-5472.CAN-07-6278
Article
CAS
PubMed
Google Scholar
Dankbar B, Padró T, Leo R, Feldmann B, Kropff M, Mesters RM, Serve H, Berdel WE, Kienast J: Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood. 2000, 95: 2630-2636.
CAS
PubMed
Google Scholar
Le Gouill S, Podar K, Amiot M, Hideshima T, Chauhan D, Ishitsuka K, Kumar S, Raje N, Richardson PG, Harousseau JL, Anderson KC: VEGF induces Mcl-1 up-regulation and protects multiple myeloma cells against apoptosis. Blood. 2004, 104: 2886-2892. 10.1182/blood-2004-05-1760
Article
CAS
PubMed
Google Scholar
Fang J, Xia C, Cao Z, Zheng JZ, Reed E, Jiang BH: Apigenin inhibits VEGF and HIF-1 expression via PI3K/AKT/p70S6K1 and HDM2/p53 pathways. FASEB J. 2005, 19: 342-353. 10.1096/fj.04-2175com
Article
CAS
PubMed
Google Scholar