McCabe KM, Olson SB, Moses RE: DNA interstrand crosslink repair in mammalian cells. J Cell Physiol. 2009, 220: 569-573. 10.1002/jcp.21811
Article
PubMed Central
CAS
PubMed
Google Scholar
Rabik CA, Dolan ME: Molecular mechanisms of resistance and toxicity associated with platinating agents. Canc Treat Rev. 2007, 33: 9-23. 10.1016/j.ctrv.2006.09.006
Article
CAS
Google Scholar
Dhillon KK, Swisher EM, Taniguchi T: Secondary mutations of BRCA1/2 and drug resistance. Canc Sci. 2011, 102: 663-669. 10.1111/j.1349-7006.2010.01840.x
Article
CAS
Google Scholar
D'Andrea AD: Susceptibility pathways in Fanconi's anemia and breast cancer. N Engl J Med. 2010, 362: 1909-1919. 10.1056/NEJMra0809889
Article
PubMed Central
PubMed
Google Scholar
Kee Y, D'Andrea AD: Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Genes Dev. 2010, 24: 1680-1694. 10.1101/gad.1955310
Article
PubMed Central
CAS
PubMed
Google Scholar
Stoepker C, Hain K, Schuster B, Hilhorst-Hofstee Y, Rooimans MA, Steltenpool J, Oostra AB, Eirich K, Korthof ET, Nieuwint AW: SLX4, a coordinator of structure-specific endonucleases, is mutated in a new Fanconi anemia subtype. Nat Genet. 2011, 43: 138-141. 10.1038/ng.751
Article
CAS
PubMed
Google Scholar
Kim Y, Lach FP, Desetty R, Hanenberg H, Auerbach AD, Smogorzewska A: Mutations of the SLX4 gene in Fanconi anemia. Nat Genet. 2011, 43: 142-146. 10.1038/ng.750
Article
PubMed Central
CAS
PubMed
Google Scholar
Garcia-Higuera I, Taniguchi T, Ganesan S, Meyn MS, Timmers C, Hejna J, Grompe M, D'Andrea AD: Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell. 2001, 7: 249-262. 10.1016/S1097-2765(01)00173-3
Article
CAS
PubMed
Google Scholar
Nijman SM, Huang TT, Dirac AM, Brummelkamp TR, Kerkhoven RM, D'Andrea AD, Bernards R: The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol Cell. 2005, 17: 331-339. 10.1016/j.molcel.2005.01.008
Article
CAS
PubMed
Google Scholar
Jacquemont C, Taniguchi T: Disruption of the Fanconi anemia pathway in human cancer in the general population. Canc Biol Ther. 2006, 5: 1637-1639. 10.4161/cbt.5.12.3658
Article
CAS
Google Scholar
Taniguchi T, Tischkowitz M, Ameziane N, Hodgson SV, Mathew CG, Joenje H, Mok SC, D'Andrea AD: Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nat Med. 2003, 9: 568-574. 10.1038/nm852
Article
CAS
PubMed
Google Scholar
Sakai W, Swisher EM, Karlan BY, Agarwal MK, Higgins J, Friedman C, Villegas E, Jacquemont C, Farrugia DJ, Couch FJ: Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature. 2008, 451: 1116-1120. 10.1038/nature06633
Article
PubMed Central
CAS
PubMed
Google Scholar
Chirnomas D, Taniguchi T, de la Vega M, Vaidya AP, Vasserman M, Hartman AR, Kennedy R, Foster R, Mahoney J, Seiden MV, D'Andrea AD: Chemosensitization to cisplatin by inhibitors of the Fanconi anemia/BRCA pathway. Mol Cancer Ther. 2006, 5: 952-961. 10.1158/1535-7163.MCT-05-0493
Article
CAS
PubMed
Google Scholar
Landais I, Hiddingh S, McCarroll M, Yang C, Sun A, Turker MS, Snyder JP, Hoatlin ME: Monoketone analogs of curcumin, a new class of Fanconi anemia pathway inhibitors. Mol Canc. 2009, 8: 133 10.1186/1476-4598-8-133
Article
Google Scholar
Landais I, Sobeck A, Stone S, LaChapelle A, Hoatlin ME: A novel cell-free screen identifies a potent inhibitor of the Fanconi anemia pathway. Int J Cancer. 2009, 124: 783-792. 10.1002/ijc.24039
Article
CAS
PubMed
Google Scholar
Kee Y, Huang M, Chang S, Moreau L, Park E, Smith PG, D'Andrea AD: Inhibition of the Nedd8 system sensitizes cells to DNA Interstrand crosslinking agents. Mol Cancer Res. 2012, 10: 369-377. 10.1158/1541-7786.MCR-11-0497
Article
PubMed Central
CAS
PubMed
Google Scholar
Jana NR, Dikshit P, Goswami A, Nukina N: Inhibition of proteasomal function by curcumin induces apoptosis through mitochondrial pathway. J Biol Chem. 2004, 279: 11680-11685. 10.1074/jbc.M310369200
Article
CAS
PubMed
Google Scholar
Jacquemont C, Taniguchi T: Proteasome function is required for DNA damage response and fanconi anemia pathway activation. Cancer Res. 2007, 67: 7395-7405. 10.1158/0008-5472.CAN-07-1015
Article
CAS
PubMed
Google Scholar
Bence NF, Bennett EJ, Kopito RR: Application and Analysis of the GFP(u) Family of Ubiquitin-Proteasome System Reporters. Methods Enzymol. 2005, 399: 481-490.
Article
CAS
PubMed
Google Scholar
Nakanishi K, Yang YG, Pierce AJ, Taniguchi T, Digweed M, D'Andrea AD, Wang ZQ, Jasin M: Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proc Natl Acad Sci U S A. 2005, 102: 1110-1115. 10.1073/pnas.0407796102
Article
PubMed Central
CAS
PubMed
Google Scholar
Pierce AJ, Johnson RD, Thompson LH, Jasin M: XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev. 1999, 13: 2633-2638. 10.1101/gad.13.20.2633
Article
PubMed Central
CAS
PubMed
Google Scholar
Taniguchi T, Garcia-Higuera I, Andreassen PR, Gregory RC, Grompe M, D'Andrea AD: S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood. 2002, 100: 2414-2420. 10.1182/blood-2002-01-0278
Article
CAS
PubMed
Google Scholar
Moynahan ME, Chiu JW, Koller BH, Jasin M: Brca1 controls homology-directed DNA repair. Mol Cell. 1999, 4: 511-518. 10.1016/S1097-2765(00)80202-6
Article
CAS
PubMed
Google Scholar
Shinohara A, Ogawa H, Ogawa T: Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell. 1992, 69: 457-470. 10.1016/0092-8674(92)90447-K
Article
CAS
PubMed
Google Scholar
Andrews PA, Albright KD: Mitochondrial defects in cis-diamminedichloroplatinum(II)-resistant human ovarian carcinoma cells. Cancer Res. 1992, 52: 1895-1901.
CAS
PubMed
Google Scholar
Chou TC: Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006, 58: 621-681. 10.1124/pr.58.3.10
Article
CAS
PubMed
Google Scholar
Murakawa Y, Sonoda E, Barber LJ, Zeng W, Yokomori K, Kimura H, Niimi A, Lehmann A, Zhao GY, Hochegger H: Inhibitors of the proteasome suppress homologous DNA recombination in mammalian cells. Cancer Res. 2007, 67: 8536-8543. 10.1158/0008-5472.CAN-07-1166
Article
CAS
PubMed
Google Scholar
Guervilly JH, Mace-Aime G, Rosselli F: Loss of CHK1 function impedes DNA damage-induced FANCD2 monoubiquitination but normalizes the abnormal G2 arrest in Fanconi anemia. Hum Mol Genet. 2008, 17: 679-689.
Article
CAS
PubMed
Google Scholar
Wang X, Kennedy RD, Ray K, Stuckert P, Ellenberger T, D'Andrea AD: Chk1-mediated phosphorylation of FANCE is required for the Fanconi anemia/BRCA pathway. Mol Cell Biol. 2007, 27: 3098-3108. 10.1128/MCB.02357-06
Article
PubMed Central
CAS
PubMed
Google Scholar
Andreassen PR, D'Andrea AD, Taniguchi T: ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes Dev. 2004, 18: 1958-1963. 10.1101/gad.1196104
Article
PubMed Central
CAS
PubMed
Google Scholar
Pichierri P, Rosselli F: The DNA crosslink-induced S-phase checkpoint depends on ATR-CHK1 and ATR-NBS1-FANCD2 pathways. EMBO J. 2004, 23: 1178-1187. 10.1038/sj.emboj.7600113
Article
PubMed Central
CAS
PubMed
Google Scholar
Sleeth KM, Sorensen CS, Issaeva N, Dziegielewski J, Bartek J, Helleday T: RPA mediates recombination repair during replication stress and is displaced from DNA by checkpoint signalling in human cells. J Mol Biol. 2007, 373: 38-47. 10.1016/j.jmb.2007.07.068
Article
CAS
PubMed
Google Scholar
Oda T, Hayano T, Miyaso H, Takahashi N, Yamashita T: Hsp90 regulates the Fanconi anemia DNA damage response pathway. Blood. 2007, 109: 5016-5026. 10.1182/blood-2006-08-038638
Article
CAS
PubMed
Google Scholar
Noguchi S: Predictive factors for response to docetaxel in human breast cancers. Canc Sci. 2006, 97: 813-820. 10.1111/j.1349-7006.2006.00265.x
Article
CAS
Google Scholar
Arlander SJ, Eapen AK, Vroman BT, McDonald RJ, Toft DO, Karnitz LM: Hsp90 inhibition depletes Chk1 and sensitizes tumor cells to replication stress. J Biol Chem. 2003, 278: 52572-52577. 10.1074/jbc.M309054200
Article
CAS
PubMed
Google Scholar
Maude SL, Enders GH: Cdk inhibition in human cells compromises chk1 function and activates a DNA damage response. Cancer Res. 2005, 65: 780-786.
CAS
PubMed
Google Scholar
Esashi F, Christ N, Gannon J, Liu Y, Hunt T, Jasin M, West SC: CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature. 2005, 434: 598-604. 10.1038/nature03404
Article
CAS
PubMed
Google Scholar
Levesque AA, Kohn EA, Bresnick E, Eastman A: Distinct roles for p53 transactivation and repression in preventing UCN-01-mediated abrogation of DNA damage-induced arrest at S and G2 cell cycle checkpoints. Oncogene. 2005, 24: 3786-3796. 10.1038/sj.onc.1208451
Article
CAS
PubMed
Google Scholar
Perez RP, Lewis LD, Beelen AP, Olszanski AJ, Johnston N, Rhodes CH, Beaulieu B, Ernstoff MS, Eastman A: Modulation of cell cycle progression in human tumors: a pharmacokinetic and tumor molecular pharmacodynamic study of cisplatin plus the Chk1 inhibitor UCN-01 (NSC 638850). Clin Cancer Res. 2006, 12: 7079-7085. 10.1158/1078-0432.CCR-06-0197
Article
CAS
PubMed
Google Scholar
Wang Q, Fan S, Eastman A, Worland PJ, Sausville EA, O'Connor PM: UCN-01: a potent abrogator of G2 checkpoint function in cancer cells with disrupted p53. J Natl Canc Inst. 1996, 88: 956-965. 10.1093/jnci/88.14.956
Article
CAS
Google Scholar
Ma CX, Janetka JW, Piwnica-Worms H: Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends Mol Med. 2011, 17: 88-96. 10.1016/j.molmed.2010.10.009
Article
CAS
PubMed
Google Scholar
Chen CC, Kennedy RD, Sidi S, Look AT, D'Andrea AD: CHK1 inhibition as a strategy for targeting fanconi anemia (FA) DNA repair pathway deficient tumors. Mol Canc. 2009, 8: 24 10.1186/1476-4598-8-24
Article
Google Scholar
Tse AN, Sheikh TN, Alan H, Chou TC, Schwartz GK: 90-kDa heat shock protein inhibition abrogates the topoisomerase I poison-induced G2/M checkpoint in p53-null tumor cells by depleting Chk1 and Wee1. Mol Pharmacol. 2009, 75: 124-133. 10.1124/mol.108.050807
Article
PubMed Central
CAS
PubMed
Google Scholar
McCollum AK, Lukasiewicz KB, Teneyck CJ, Lingle WL, Toft DO, Erlichman C: Cisplatin abrogates the geldanamycin-induced heat shock response. Mol Cancer Ther. 2008, 7: 3256-3264. 10.1158/1535-7163.MCT-08-0157
Article
PubMed Central
CAS
PubMed
Google Scholar
Hubbard J, Erlichman C, Toft DO, Qin R, Stensgard BA, Felten S, Ten Eyck C, Batzel G, Ivy SP, Haluska P: Phase I study of 17-allylamino-17 demethoxygeldanamycin, gemcitabine and/or cisplatin in patients with refractory solid tumors. Investig New Drugs. 2011, 29: 473-480. 10.1007/s10637-009-9381-y
Article
CAS
Google Scholar
Kling J: New twists on proteasome inhibitors. Nat Biotechnol. 2010, 28: 1236-1238. 10.1038/nbt.1727
Article
CAS
PubMed
Google Scholar
Solomon VR, Lee H: Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur J Pharmacol. 2009, 625: 220-233. 10.1016/j.ejphar.2009.06.063
Article
CAS
PubMed
Google Scholar
Kennedy RD, Chen CC, Stuckert P, Archila EM, De la Vega MA, Moreau LA, Shimamura A, D'Andrea AD: Fanconi anemia pathway-deficient tumor cells are hypersensitive to inhibition of ataxia telangiectasia mutated. J Clin Invest. 2007, 117: 1440-1449. 10.1172/JCI31245
Article
PubMed Central
CAS
PubMed
Google Scholar
Weinstock DM, Nakanishi K, Helgadottir HR, Jasin M: Assaying double-strand break repair pathway choice in mammalian cells using a targeted endonuclease or the RAG recombinase. Methods Enzymol. 2006, 409: 524-540.
Article
PubMed Central
CAS
PubMed
Google Scholar
Richardson C, Moynahan ME, Jasin M: Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev. 1998, 12: 3831-3842. 10.1101/gad.12.24.3831
Article
PubMed Central
CAS
PubMed
Google Scholar
Elliott PJ, Soucy TA, Pien CS, Adams J, Lightcap ES: Assays for proteasome inhibition. Meth Mol Med. 2003, 85: 163-172.
CAS
Google Scholar
Tsai CM, Gazdar AF, Venzon DJ, Steinberg SM, Dedrick RL, Mulshine JL, Kramer BS: Lack of in vitro synergy between etoposide and cis-diamminedichloroplatinum(II). Cancer Res. 1989, 49: 2390-2397.
CAS
PubMed
Google Scholar