Horn PJ, Peterson CL: Heterochromatin assembly: A new twist on an old model. Chromosome Res. 2006, 14: 83-94. 10.1007/s10577-005-1018-1
CAS
PubMed
Google Scholar
Luger K: Structure and dynamic behavior of nucleosomes. Curr Opin Genet Dev. 2003, 13: 127-135. 10.1016/S0959-437X(03)00026-1
CAS
PubMed
Google Scholar
Saha A, Wittmeyer J, Cairns BR: Chromatin remodelling: The industrial revolution of DNA around histones. Nat Rev Mol Cell Biol. 2006, 7: 437-47. 10.1038/nrm1945
CAS
PubMed
Google Scholar
Marks PA, Rifkind RA, Richon VM, Breslow R: Inhibitors of histone deacetylase are potentially effective anticancer agents. Clin Cancer Res. 2001, 7: 759-60.
CAS
PubMed
Google Scholar
Iizuka M, Smith MM: Functional consequences of histone modifications. Curr Opin Genet Dev. 2003, 13: 154-60. 10.1016/S0959-437X(03)00020-0
CAS
PubMed
Google Scholar
Spotswood HT, Turner BM: An increasingly complex code. J Clin Invest. 2002, 110: 577-82.
PubMed Central
CAS
PubMed
Google Scholar
Bird A: DNA methylation patterns and epigenetic memory. Genes Dev. 2002, 16: 6-21. 10.1101/gad.947102
CAS
PubMed
Google Scholar
Jones PA, Baylin SB: The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002, 3: 415-428. 10.1038/nrg962
CAS
PubMed
Google Scholar
Bestor TH: The DNA methyltransferases of mammals. Hum Mol Genet. 2000, 9: 2395-2402. 10.1093/hmg/9.16.2395
CAS
PubMed
Google Scholar
Okano M: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999, 99: 247-257. 10.1016/S0092-8674(00)81656-6
CAS
PubMed
Google Scholar
Okano M: Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998, 19: 219-220. 10.1038/890
CAS
PubMed
Google Scholar
Rhee I: DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature. 2002, 416: 552-556. 10.1038/416552a
CAS
PubMed
Google Scholar
Rhee I: CpG methylation is maintained in human cancer cells lacking DNMT1. Nature. 2000, 404: 1003-1007. 10.1038/35010000
CAS
PubMed
Google Scholar
Gravina GL, Festuccia C, Millimaggi D, Dolo V, Tombolini V, De Vito M: Chronic Azacitidine Treatment Results in Differentiating Effects, Sensitizes Against Bicalutamide in Androgen-Independent Prostate Cancer Cells. The Prostate. 2008, 68: 793-801. 10.1002/pros.20748
CAS
PubMed
Google Scholar
Herman JG, Baylin SB: Gene silencing in cancer in association with promoterhypermethylation. N Engl J Med. 2003, 349: 2042-2054. 10.1056/NEJMra023075
CAS
PubMed
Google Scholar
Silverman LR, Demakos EP, Peterson BL: Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol. 2002, 20: 2429-40. 10.1200/JCO.2002.04.117
CAS
PubMed
Google Scholar
Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB: Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 1999, 21: 103-7. 10.1038/5047
CAS
PubMed
Google Scholar
kristensen LS, Nielsen HM, Hansen LL: Epigenetic and cancer treatment. European Juornal of Pharmacology. 2009, 625: 131-142. 10.1016/j.ejphar.2009.10.011.
Google Scholar
Oki Y, Aoki E, Issa JP: Decitabine--Bedside to bench. Crit Rev Oncol. 2007, 61: 140-152. 10.1016/j.critrevonc.2006.07.010.
Google Scholar
Larsen AK, Escargueil AE, Skladanowski A: Resistance mechanisms associated with altered intracellular distribution of anticancer agents. Pharmacol Ther. 2000, 85: 217-29. 10.1016/S0163-7258(99)00073-X
CAS
PubMed
Google Scholar
Larsen AK, Skladanowski A: Cellular resistance to topoisomerase-targeted drugs: from drug uptake to cell death. Biochim Biophys Acta. 1998, 1400: 257-74.
CAS
PubMed
Google Scholar
Kern MA, Helmbach H, Artuc M, Karmann D, Jurgovsky K, Schadendorf D: Human melanoma cell lines selected in vitro displaying various levels of drug resistance against Cisplatin, fotemustine, vindesine or Etoposide: modulation of proto-oncogene expression. Anticancer Res. 1997, 17: 4359-70.
CAS
PubMed
Google Scholar
Spitz DR, Kinter MT, Roberts RJ: Contribution of increased glutathione content to mechanisms of oxidative stress resistance in hydrogen peroxide resistant hamster fibroblasts. J Cell Physiol. 1995, 165: 600-9. 10.1002/jcp.1041650318
CAS
PubMed
Google Scholar
Spitz DR, Li GC: Heat-induced cytotoxicity in H2O2-resistant Chinese hamster fibroblasts. J Cell Physiol. 1990, 142: 255-60. 10.1002/jcp.1041420206
CAS
PubMed
Google Scholar
Spitz DR, Phillips JW, Adams DT, Sherman CM, Deen DF, Li GC: Cellular resistance to oxidative stress is accompanied by resistance to Cisplatin: the significance of increased catalase activity and total glutathione in hydrogen peroxide-resistant fibroblasts. J Cell Physiol. 1993, 156: 72-9. 10.1002/jcp.1041560111
CAS
PubMed
Google Scholar
Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH, Tavtigian SV: Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet. 1997, 15: 356-362. 10.1038/ng0497-356
CAS
PubMed
Google Scholar
Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R: PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997, 275: 1943-1947. 10.1126/science.275.5308.1943
CAS
PubMed
Google Scholar
Wang SI, Puc J, Li J, Bruce JN, Cairns P, Sidransky D, Parsons R: PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Cancer Res. 1997, 57: 4183-4186.
CAS
PubMed
Google Scholar
Guldberg P, thor Straten P, Birck A, Ahrenkiel V, Kirkin AF, Zeuthen J: Disruption of the MMAC1/PTEN gene by deletion or mutation is a frequent event in malignant melanoma. Cancer Res. 1997, 57: 3660-3663.
CAS
PubMed
Google Scholar
Cairns P, Okami K, Halachmi S, Halachmi N, Esteller M, Herman JG, Jen J, Isaacs WB, Bova GS, Sidransky D: Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res. 1997, 57: 4997-5000.
CAS
PubMed
Google Scholar
Gravina G, Biordi L, Martella F, Flati V, Ricevuto E, Ficorella C, Tombolini V, Festuccia C: Epigenetic modulation of PTEN expression during antiandrogenic therapies in human prostate cancer. International Journal of Oncology. 2009, 35: 1133-9.
CAS
PubMed
Google Scholar
Soria JC, Lee HY, Lee JI, Wang L, Issa JP, Kemp BL, Liu DD, Kurie JM, Mao L, Khuri FR: Lack of PTEN Expression in Non-Small Cell Lung Cancer Could Be Related to Promoter Methylation. Clin Cancer Res. 2002, 8: 1178-1184.
CAS
PubMed
Google Scholar
Whang YE, Wu X, Suzuki H: Inactivation of the tumor suppressor PTENyMMAC1 in dvanced human prostate cancer through loss of expression. Proc Natl Acad Sci. 1998, 95: 5246-5250. 10.1073/pnas.95.9.5246
PubMed Central
CAS
PubMed
Google Scholar
Davies MA, Koul D, Dhesi H, Berman R, McDonnell TJ: Regulation of AKT/PKB activity, cellular growth, and apoptosis in prostate carcinomacells by MMAC/PTEN. Cancer Res. 1999, 59: 2551-2556.
CAS
PubMed
Google Scholar
Festuccia C, Gravina GL, D'Alessandro AM, Muzi P, Millimaggi D: Azacitidine improves antitumor effects of docetaxel and cisplatin in aggressive prostate cancer models. Endocr Relat Cancer. 2009, 16: 401-413. 10.1677/ERC-08-0130
CAS
PubMed
Google Scholar
Tanaka Motoyoshi, Koul Dimpy, Davies Michael, Liebert Monica, Steck Peter, Grossman Barton: MMAC1/PTEN inhibits cell growth and induces chemosensitivity to doxorubicin in human bladder cancer cells. Oncogene. 2000, 19: 5406-5412. 10.1038/sj.onc.1203918
CAS
PubMed
Google Scholar
Fujiwara T, Grimm EA, Mukhopadnyay T, Zhang WW: Induction of chemosensitivity in human lung cancer cells in vivo by adenovirus-mediated transfer of the wild type p53 gene. Cancer Res. 1994, 54: 2287-2291.
CAS
PubMed
Google Scholar
Ogawa N, Fujiwara T, Kagawa S: Novel combination therapy for human colon cancer with adenovirus-mediated wild-type p53 gene transfer and DNA-damaging chemotherapeutic agent. Int J Cancer. 1997, 73: 367-70. 10.1002/(SICI)1097-0215(19971104)73:3<367::AID-IJC11>3.0.CO;2-A
CAS
PubMed
Google Scholar
Gurnani M, Lipari P, Dell J, Shi B, Nielsen LL: Adenovirus-mediated p53 gene therapy has greater efficacy when combined with chemotherapy against human head-neck, ovarian, prostate, and breast cancer. Cancer Chemother Pharmacol. 1999, 44: 143-151. 10.1007/s002800050959
CAS
PubMed
Google Scholar
Thoretsky JA, Takar M, Eskenazi AE, Frantz CN: Phosphoinositide 3-hydroxide kinase blockade enhances apoptosis in the Ewing's sarcoma family tumors. Cancer Res. 1999, 59: 5745-50.
Google Scholar
Wan X, Li J, Lu X: PTEN augments doxorubicin-induced apoptosis in PTEN-null Ishikawa cells. Int J Gynecol Cancer. 2007, 17: 808-812. 10.1111/j.1525-1438.2007.00890.x
CAS
PubMed
Google Scholar
Mayo LD, Dixon JE, Durden DL, Tonks NK, Donner DB: PTEN protects p53from Mdm2 and sensitizes cancer cells to chemotherapy. J Biol Chem. 2002, 277: 5484-9. 10.1074/jbc.M108302200
CAS
PubMed
Google Scholar
Green SK, Frankel A, Kerbel RS: Adhesion-dependent multicellular drug resistance. Anti-Cancer Drug Design. 1999, 14: 153-68.
CAS
PubMed
Google Scholar
St Croix B, Rak JW, Kapitain S, Sheehan C, Graham CH, Kerbel RS: Reversal by hyaluronidase of adhesion-dependent multicellular drug resistance in mammary carcinoma cells. J Natl Cancer Inst. 1996, 88: 1285-96. 10.1093/jnci/88.18.1285
CAS
Google Scholar
St Croix B, Florenes VA, Rak JW, Flanagan M, Bhattacharya N, Slingerland JM, Kerbel RS: Impact of the cyclin dependent kinase inhibitor p27Kip1 on adhesion-dependent resistance of tumor cells to anticancer agents. Nat Med. 1996, 2: 1204-10. 10.1038/nm1196-1204
CAS
PubMed
Google Scholar
St Croix B, Sheehan C, Rak JW, Florenes VA, Slingerland JM, Kerbel RS: E-cadherin-dependent growth suppression is mediated by the cyclin dependent kinase inhibitor p27KIP1. J Cell Biol. 1998, 142: 557-71. 10.1083/jcb.142.2.557
PubMed Central
CAS
PubMed
Google Scholar
Green SK, Francia G, Isidoro C, Kerbel RS: Anti-adhesive antibodies targeting E-cadherin sensitize multicellular tumor spheroids to chemotherapy in vitro. Mol Cancer Ther. 2004, 3: 149-59.
CAS
PubMed
Google Scholar
Teicher BA, Herman TS, Holden SA, Wang YY, Pfeffer MR, Crawford JW, Frei E: Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo. Science. 1990, 247: 1457-61. 10.1126/science.2108497
CAS
PubMed
Google Scholar
Youn CK, Cho HJ, Kim SH, Kim HB, Kim MH, Chang IY, Lee JS, Chung MH, Hahm KS, You HJ: Bcl-2 expression suppresses mismatch repair activity through inhibition of E2F transcriptional activity. Nat Cell Biol. 2005, 7: 137-47. 10.1038/ncb1215
CAS
PubMed
Google Scholar
Kobayashi H, Man S, Kapitain SJ, Teicher BA, Kerbel RS: Acquired multicellular-mediated resistance to alkylating agents in cancer. Proc Natl Acad Sci USA. 1993, 90: 3294-8. 10.1073/pnas.90.8.3294
PubMed Central
CAS
PubMed
Google Scholar
Jain RK: Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J Natl Cancer Inst. 1989, 81: 570-6. 10.1093/jnci/81.8.570
CAS
PubMed
Google Scholar
Bindra RS, Schaffer PJ, Meng A, Woo J, Måseide K, Roth ME, Lizardi P, Hedley DW, Bristow RG, Glazer PM: Down-regulation of Rad51 and decreased homologous recombination in hypoxic cancer cells. Mol Cell Biol. 2004, 24: 8504-18. 10.1128/MCB.24.19.8504-8518.2004
PubMed Central
CAS
PubMed
Google Scholar
Plumb JA, Strathdee G, Sludden J, Kaye SB, Brown R: Reversal of drug resistance in human tumor xenografts by 2V-deoxy-5-azacytidineinduced demethylation of the hMLH1 gene promoter. Cancer Res. 2000, 60: 6039-44.
CAS
PubMed
Google Scholar
Chan AT, Tao Q, Robertson KD, Flinn IW, Mann RB, Klencke B, Kwan WH, Leung TW, Johnson PJ, Ambinder RF: Azacitidine induces demethylation of the Epstein-Barr virus genome in tumors. J Clin Oncol. 2004, 22: 1373-81. 10.1200/JCO.2004.04.185
CAS
PubMed
Google Scholar
Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG: Inactivation of the DNArepair geneO6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res. 1999, 59: 793-797.
CAS
PubMed
Google Scholar
Esteller M, Herman JG: Generating mutations but providing chemosensitivity: the role of O6-methylguanine DNA methyltransferase in human cancer. Oncogene. 2004, 23: 1-8. 10.1038/sj.onc.1207316
CAS
PubMed
Google Scholar
Hermann A, Gowher H, Jeltsch A: Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci. 2004, 61: 2571-2587. 10.1007/s00018-004-4201-1
CAS
PubMed
Google Scholar
Bae SI, Lee HS, Kim SH, Kim WH: Inactivation of O6-methylguanine-DNA methyltransferase by promoter CpG island hypermethylation in gastric cancers. Br J Cancer. 2002, 86: 1888-1892. 10.1038/sj.bjc.6600372
PubMed Central
CAS
PubMed
Google Scholar
Danam RP, Howell SR, Brent TP, Harris LC: Epigenetic regulation ofO6-methylguanine-DNA methyltransferase gene expression by histone acetylation and methyl-CpG binding proteins. Mol Cancer Ther. 2005, 4: 1-69.
Google Scholar
Wang W, Huper G, Guo Y, Murphy SK, Olson JA, Marks JR: Analysis of methylation sensitive transcriptome identifies GADD45a as a frequently methylated gene in breast cancer. Oncogene. 2005, 24: 705-2714.
Google Scholar
Michel B, Flores MJ, Viguera E, Grompone G, Seigneur M, Bidnenko V: Rescue of arrested replication forks by homologous recombination. Proc Natl Acad Sci USA. 2001, 98: 8181-8. 10.1073/pnas.111008798
PubMed Central
CAS
PubMed
Google Scholar
McGlynn P, Lloyd RG: Recombinational repair and restart of damaged replication forks. Nat Rev Mol Cell Biol. 2002, 3: 859-70. 10.1038/nrm951
CAS
PubMed
Google Scholar
Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW: The doublestrand-break repair model for recombination. Cell. 1983, 33: 25-35. 10.1016/0092-8674(83)90331-8
CAS
PubMed
Google Scholar
Fishman-Lobell J, Rudin N, Haber JE: Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol Cell Biol. 1992, 12: 1292-303.
PubMed Central
CAS
PubMed
Google Scholar
Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ: ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem. 2001, 276: 42462-7. 10.1074/jbc.C100466200
CAS
PubMed
Google Scholar
Rothkamm K, Kruger I, Thompson LH, Lobrich M: Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol. 2003, 23: 5706-15. 10.1128/MCB.23.16.5706-5715.2003
PubMed Central
CAS
PubMed
Google Scholar
Durocher D, Jackson SP: DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme?. Curr Opin Cell Biol. 2001, 13: 225-31. 10.1016/S0955-0674(00)00201-5
CAS
PubMed
Google Scholar
Roos WP, Kaina B: DNA damage-induced cell death by apoptosis. Trends Mol Med. 2006, 12: 440-50. 10.1016/j.molmed.2006.07.007
CAS
PubMed
Google Scholar
Kurz EU, Douglas P, Lees-Miller SP: Doxorubicin activates ATM dependent phosphorylation of multiple downstream targets in part through the generation of reactive oxygen species. J Biol Chem. 2004, 279: 53272-81. 10.1074/jbc.M406879200
CAS
PubMed
Google Scholar
Kiziltepe T, Hideshima T, Catley L, Raje N, Yasui H: 5-Azacytidine, a DNA methyltransferase inhibitor, induces ATR-mediated DNA double-strand break responses, apoptosis, and synergistic cytotoxicity with doxorubicine and bortezomib against multiple myeloma cells. Mol Cancer Ther. 2007, 6: 1718-1727. 10.1158/1535-7163.MCT-07-0010
CAS
PubMed
Google Scholar
Taylor WR, Stark GR: Regulation of the G2/M transition by p53. Oncogene. 2001, 20: 1803-15. 10.1038/sj.onc.1204252
CAS
PubMed
Google Scholar
Wichmann A, Jaklevic B, Su TT: Ionizing radiation induces caspase dependent but Chk2- and p53-independent cell death in Drosophila melanogaster. Proc Natl Acad Sci USA. 2006, 103: 9952- 10.1073/pnas.0510528103
PubMed Central
CAS
PubMed
Google Scholar
Aliouat-Denis CM, Dendouga N, Van den Wyngaert I, Goehlmann H, Steller U, van de Weyer I, Van Slycken N, Andries L, Kass S, Luyten W, Janicot M, Vialard JE: p53-independent regulation of p21Waf1/Cip1 expression and senescence by Chk2. Mol Cancer Res. 2005, 3: 627-34. 10.1158/1541-7786.MCR-05-0121
CAS
PubMed
Google Scholar
Pepper CJ, Hambly RM, Fegan CD, Delavault P, Thurston DE: The novel sequence-specific DNA cross-linking agent SJG-136 (NSC 694501) has potent and selective in vitro cytotoxicity in human B-cell chronic lymphocytic leukemia cells with evidence of a p53-independent mechanism of cell kill. Cancer Res. 2004, 64: 6750-5. 10.1158/0008-5472.CAN-04-1713
CAS
PubMed
Google Scholar
Tse AN, Schwartz GK: Potentiation of cytotoxicity of topoisomerase in poison by concurrent and sequential treatment with the checkpoint inhibitor UCN-01 involves disparate mechanisms resulting in either p53-independent clonogenic suppression or p53-dependent mitotic catastrophe. Cancer Res. 2004, 64: 6635-44. 10.1158/0008-5472.CAN-04-0841
CAS
PubMed
Google Scholar
Chai Guolin, Li Lian, Zhou Wen, Wu Lipeng, Zhao Ying, Wang Donglai, Lu Shaoli, Yu Yu, Wang Haiying, McNutt Michael, Hu Ye-Guang, Chen Yingqi, Yang Yang, Wu Xin, Otterson Gregory, Zhu Wei-Guo: HDAC Inhibitors Act with 5-aza-2'-Deoxycytidine to Inhibit Cell Proliferation by Suppressing Removal of Incorporated Abases in Lung Cancer Cells. PLoS One. 2008, 3: , 3412-20. 10.1371/journal.pone.0002445.
Google Scholar
Nebbioso A, Clarke N, Voltz E, Germain E, Ambrosino C, Bontempo P, Alvarez R, Schiavone EM, Ferrara F, Bresciani F, Weisz A, de Lera AR, Gronemeyer H, Altucci L: Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat Med. 2005, 11: 77-84. 10.1038/nm1161
CAS
PubMed
Google Scholar
Xu J, Zhou JY, Tainsky MA, Wu GS: Evidence that Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Induction by 5-Aza-2¶-Deoxycytidine Sensitizes Human Breast Cancer Cells to Adriamycin. Cancer Res. 2007, 67: 1203-1211. 10.1158/0008-5472.CAN-06-2310
CAS
PubMed
Google Scholar
Wang Q, Wang X, Hernandez A, Hellmich MR, Gatalica Z, Evers BM: Regulation of TRAIL expression by the phosphatidylinositol 3-kinase/Akt/GSK-3 pathway in human colon cancer cells. J Biol Chem. 2002, 277: 36602-10. 10.1074/jbc.M206306200
CAS
PubMed
Google Scholar
Fulda S, Kufer MU, Meyer E, van Valen F, Dockhorn-Dworniczak B, Debatin KM: Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene. 2001, 20: 5865-77. 10.1038/sj.onc.1204750
CAS
PubMed
Google Scholar
Fulda S, Debatin KM: 5-Aza-2¶-deoxycytidine and IFN-gamma cooperate to sensitize for TRAIL-inducedapoptosis by upregulating caspase-8. Oncogene. 2006, 25: 5125-33. 10.1038/sj.onc.1209608
CAS
PubMed
Google Scholar
Gomyo Y, Sasaki J, Branch C, Roth JA, Mukhopadhyay T: 5-aza-2¶-deoxycytidine upregulates caspase-9 expression cooperating with p53-induced apoptosis in human lung cancer cells. Oncogene. 2004, 23: 6779-87. 10.1038/sj.onc.1207381
CAS
PubMed
Google Scholar
Nottoli T, Hagopian-Donaldson S, Zhang J, Perkins A, Williams T: AP-2-null cells disrupt morphogenesis of the eye, face, and limbs in chimeric mice. Proc Natl Acad Sci USA. 1998, 95: 13714-9. 10.1073/pnas.95.23.13714
PubMed Central
CAS
PubMed
Google Scholar
Feng W, Williams T: Cloning and characterization of the mouse AP-2e gene: a novel family member expressed in the developing olfactory bulb. Mol Cell Neurosci. 2003, 24: 460-75. 10.1016/S1044-7431(03)00209-4
CAS
PubMed
Google Scholar
Higler-Eversheim K, Moser M, Schorle H, Buettner R: Regulatory roles of AP-2 transcription factors in vertebrate development, apoptosis and cell cycle control. Gene. 2000, 260: 1-12. 10.1016/S0378-1119(00)00454-6
Google Scholar
McPherson LA, Loktev AV, Weigel RJ: Tumor suppressor activity of AP2a mediated through a direct interaction with p53. J Biol Chem. 2002, 277: 45028-33. 10.1074/jbc.M208924200
CAS
PubMed
Google Scholar
Zeng YX, Somasundaram K, El-Deiry WS: AP2 inhibits cancer cell growth and activates p21WAF1/CIP1 expression. Nat Genet. 1997, 15: 28-32. 10.1038/ng0197-78.
CAS
Google Scholar
Wajapeyee N, Somasundaram K: Cell cycle arrest and apoptosis induction by activator protein 2a (AP-2a) and the role of p53 and p21WAF1/CIP1 in AP-2amediated growth inhibition. J Biol Chem. 2003, 278: 52093-101. 10.1074/jbc.M305624200
CAS
PubMed
Google Scholar
Zhang J, Brewer S, Huang J, Williams T: Overexpression of transcription factor AP-2a suppresses mammary gland growth and morphogenesis. Dev Biol. 2003, 256: 127-45. 10.1016/S0012-1606(02)00119-7
CAS
PubMed
Google Scholar
Douglas DB, Akiyama Y, Carraway H: Hypermethylation of a small CpGuanine rich region correlates with loss of activator protein-2a expression during progression of breast cancer. Cancer Res. 2004, 64: 1611-20. 10.1158/0008-5472.CAN-0318-2
CAS
PubMed
Google Scholar
Anttila MA, Kellokoski JK, Moisio KI, Mitchell PJ, Saarikoski S, Syrjänen K, Kosma VM: Expression of transcription factor AP-2a predicts survival in epithelial ovarian cancer. Br J Cancer. 2000, 82: 1974-83. 10.1054/bjoc.2000.1146
PubMed Central
CAS
PubMed
Google Scholar
Ropponen KM, Kellokoski JK, Pirinen RT, Moisio KI, Eskelinen MJ, Alhava EM, Kosma VM: Expression of transcription factor AP-2 in colorectal adenomas and adenocarcinomas; comparison of immunohistochemistry and in situ hybridisation. J Clin Pathol. 2001, 54: 533-8. 10.1136/jcp.54.7.533
PubMed Central
CAS
PubMed
Google Scholar
Heimberger AB, McGary EC, Suki D, Ruiz M, Wang H, Fuller GN, Bar-Eli M: Loss of the AP-2a transcription factor is associated with the gradeof human gliomas. Clin Cancer Res. 2005, 11: 267-72. 10.1158/1078-0432.CCR-04-1737
CAS
PubMed
Google Scholar
Ruiz M, Pettaway C, Song R, Stoeltzing O, Ellis L, Bar-Eli M: Activator protein 2a inhibits tumorigenicity and represses vascular endothelial growth factortranscription in prostate cancer cells. Cancer Res. 2004, 64: 631-8. 10.1158/0008-5472.CAN-03-2751
CAS
PubMed
Google Scholar
Gershenwald JE, Sumner W, Calderone T, Wang Z, Huang S, Bar-Eli M: Dominant-negative transcription factor AP-2 augments SB-2 melanoma tumor growthin vivo. Oncogene. 2001, 20: 3363-75. 10.1038/sj.onc.1204450
CAS
PubMed
Google Scholar
Dicato M, Duhem C, Pauly M, Ries F: Multidrug resistance: molecular and clinical aspects. Cytokines Cell Mol Ther. 1997, 3: 91-9.
CAS
PubMed
Google Scholar
Hunt CR, Sim JE, Sullivan SJ, Featherstone T, Golden W, Von Kapp-Herr C, Hock RA, Gomez RA, Parsian AJ, Spitz DR: Genomic instability and catalase gene amplification induced by chronic exposure to oxidative stress. Cancer Res. 1998, 58: 3986-92.
CAS
PubMed
Google Scholar
Bergelson S, Pinkus R, Daniel V: Intracellular glutathione levels regulate Fos/Jun induction and activation of glutathione S-transferase gene expression. Cancer Res. 1994, 54: 36-40.
CAS
PubMed
Google Scholar
Dewey WC: Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperthermia. 1994, 10: 457-83. 10.3109/02656739409009351
CAS
PubMed
Google Scholar
Diamond DA, Parsian A, Hunt CR, Lofgren S, Spitz DR, Goswami PC, Gius D: Redox factor-1 (Ref-1) mediates the activation of AP-1 in HeLa and NIH 3T3 cells in response to heat shock. J Biol Chem. 1999, 274: 16959-64. 10.1074/jbc.274.24.16959
CAS
PubMed
Google Scholar
Kerppola T, Curran T: Transcription. Zen and the art of Fos and Jun. Nature. 1995, 373: 199-200. 10.1038/373199a0
CAS
PubMed
Google Scholar
Martins NM, Santos NA, Curti C, Bianchi ML, Santos AC: Cisplatin induces mitochondrial oxidative stress with resultant energetic metabolism impairment, membrane rigidification and apoptosis in rat liver. J Appl Toxicol. 2007, 23: 234-244.
Google Scholar
Simons AL, Ahmad IM, Mattson DM, Dornfeld KJ: Spitz DR. 2-Deoxy-Dglucose combined with cisplatin enhances cytotoxicity via metabolic oxidative stress in human head and neck cancer cells. Cancer Res. 2007, 67: 3364-70. 10.1158/0008-5472.CAN-06-3717
CAS
PubMed
Google Scholar
Siitonen T, Alaruikka P, Mantymaa P, Savolainen ER, Kavanagh TJ, Krejsa CM, Franklin CC, Kinnula V, Koistinen P: Protection of acute myeloblastic leukemia cells against apoptotic cell death by high glutathione and gammaglutamylcysteine synthetase levels during etoposide-induced oxidative stress. Ann Oncol. 1999, 10: 1361-7. 10.1023/A:1008382912096
CAS
PubMed
Google Scholar
Mairesse N, Bernaert D, Del Bino G, Horman S, Mosselmans R, Robaye B, Galand P: Expression of HSP27 results in increased sensitivity to tumor necrosis factor, etoposide, and H2O2 in an oxidative stress-resistant cell line. J Cell Physiol. 1998, 177: 606-17. 10.1002/(SICI)1097-4652(199812)177:4<606::AID-JCP11>3.0.CO;2-Z
CAS
PubMed
Google Scholar
Furuta Y, Hunter N, Barkley T, Hall E, Milas L: Increase in radioresponse of murine tumors by treatment with indomethacin. Cancer Res. 1988, 48: 3008-13.
CAS
PubMed
Google Scholar
Iliakis G, Seaner R, Okayasu R: Effects of hyperthermia on the repair of radiation-induced DNA single- and double-strand breaks in DNA double-strand break repair-deficient and repair-proficient cell lines. Int J Hyperthermia. 1990, 6: 813-33. 10.3109/02656739009140828
CAS
PubMed
Google Scholar
Jurivich DA, Pachetti C, Qiu L, Welk JF: Salicylate triggers heat shock factor differently than heat. J Biol Chem. 1995, 270: 24489-95. 10.1074/jbc.270.41.24489
CAS
PubMed
Google Scholar
Jurivich DA, Sistonen L, Kroes RA, Morimoto RI: Effect of sodium salicylate on the human heat shock response. Science. 1992, 255: 1243-5. 10.1126/science.1546322
CAS
PubMed
Google Scholar
Bhushan A, Abramson R, Chiu JF, Tritton TR: Expression of c-fos in human and murine multidrug-resistant cells. Mol Pharmacol. 1992, 42: 69-74.
CAS
PubMed
Google Scholar
Dignam JD: Preparation of extracts from higher eukaryotes. Methods Enzymol. 1990, 182: 194-203. full_text
CAS
PubMed
Google Scholar
Maity A, Kao GD, Muschel RJ, McKenna WG: Potential molecular targets for manipulating the radiation response. Int J Radiat Oncol Biol Phys. 1997, 37: 639-53. 10.1016/S0360-3016(96)00598-6
CAS
PubMed
Google Scholar
Yao KS, Godwin AK, Johnson SW, Ozols RF, O'Dwyer PJ, Hamilton TC: Evidence for altered regulation of gamma-glutamylcysteine synthetase gene expression among cisplatin-sensitive and cisplatin-resistant human ovarian cancer cell lines. Cancer Res. 1995, 55: 4367-74.
CAS
PubMed
Google Scholar
Bradbury CM, Locke JE, Wei SJ, Shah S, Rene LM, Clemens RA, Roti Roti J, Horikoshi N, Gius D: Increased activator protein 1 activity as well as resistance to heat-induced radiosensitization, hydrogen peroxide, and cisplatin are inhibited by indomethacin in oxidative stress-resistant cells. Cancer Res. 2001, 61: 3486-92.
CAS
PubMed
Google Scholar
Mishra MV, Bisht K S, Sun L, Muldoon-Jacobs K, Awwad R, Kaushal A, Nguyen P, Huang L, Pennington JD, Markovina S, Bradbury CM, Gius D: DNMT1 as a Molecular Target in a Multimodality-Resistant Phenotype in Tumor Cells. Mol Cancer Res. 2008, 6: 243-249. 10.1158/1541-7786.MCR-07-0373
CAS
PubMed
Google Scholar
Qiu H, Yashiro M, Shinto O, Matsuzaki T, Hirakawa K: DNA methyltransferase inhibitor 5-aza-CdR enhances the radiosensitivity of gastric cancer cells. Cancer Sci. 2009, 1: 181-188. 10.1111/j.1349-7006.2008.01004.x.
Google Scholar
Santi DV, Norment A, Garrett CE: Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc Natl Acad Sci USA. 1984, 81: 6993-7. 10.1073/pnas.81.22.6993
PubMed Central
CAS
PubMed
Google Scholar
Friedman S: The irreversible binding of azacytosine-containing DNA fragments to bacterial DNA(cytosine-5)methyltransferases. J Biol Chem. 1985, 260: 5698-705.
CAS
PubMed
Google Scholar
Gabbara S, Bhagwat AS: The mechanism of inhibition of DNA (cytosine-5-)-methyltransferases by 5-azacytosine is likely to involve methyl transfer to the inhibitor. Biochem J. 1995, 307: 87-92.
PubMed Central
CAS
PubMed
Google Scholar
Friedman S, Som S: Induction of EcoRII methyltransferase: evidence for autogenous control. J Bacteriol. 1993, 175: 6293-8.
PubMed Central
CAS
PubMed
Google Scholar
Liu K, Wang YF, Cantemir C, Muller MT: Endogenous assays of DNA methyltransferases: evidence for differential activities of DNMT1, DNMT2, and DNMT3 in mammalian cells in vivo. Mol Cell Biol. 2003, 23: 2709-19. 10.1128/MCB.23.8.2709-2719.2003
PubMed Central
CAS
PubMed
Google Scholar
Juttermann R, Li E, Jaenisch R: Toxicity of 5-aza-2deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci USA. 1994, 91: 11797-801. 10.1073/pnas.91.25.11797
PubMed Central
CAS
PubMed
Google Scholar
Ferguson AT, Vertino PM, Spitzner JR, Baylin SB, Muller MT, Davidson NE: Role of estrogen receptor gene demethylation and DNA methyltransferase DNA adduct formation in 5-aza-2¶-deoxycytidine-induced cytotoxicity in human breast cancer cells. J Biol Chem. 1997, 272: 32260-6. 10.1074/jbc.272.51.32260
CAS
PubMed
Google Scholar
Karpf AR, Moore BC, Ririe TO, Jones DA: Activation of the p53 DNA damage response pathway after inhibition of DNA methyltransferase by 5-aza-2-deoxycytidine. Mol Pharmacol. 2001, 59: 751-7.
CAS
PubMed
Google Scholar
Christman JK: 5-azacytidine and 5-aza-2-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 2002, 21: 5483-95. 10.1038/sj.onc.1205699
CAS
PubMed
Google Scholar
Barbe J, Gibert I, Guerrero R: 5-azacytidine: survival and induction of the SOS response in Escherichia coli K-12. Mutat Res. 1986, 166: 9-16.
CAS
PubMed
Google Scholar
Lal D, Som S, Friedman S: Survival and mutagenic effects of 5-azacytidine in Escherichia coli. Mutat Res. 1988, 193: 229-36.
CAS
PubMed
Google Scholar
Donninger H, Vos MD, Clark GJ: The RASSF1A tumor suppressor. J Cell Sci. 2007, 120: 3163-72. 10.1242/jcs.010389
CAS
PubMed
Google Scholar
Dammann R, Li C, Yoon JH, Chin PL, Bates S, Pfeifer GP: Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet. 2000, 25: 315-19. 10.1038/77083
CAS
PubMed
Google Scholar
Schildhaus HU, Krockel I, Lippert H, Malfertheiner P, Roessner A, Schneider-Stock R: Promoter hypermethylation of p16INK4a, E-cadherin, O6-MGMT, DAPK and FHIT in adenocarcinomas of the esophagus, esophagogastric junction and proximal stomach. Int J Oncol. 2005, 26: 1493-500.
CAS
PubMed
Google Scholar
Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S, Samid D, Gnarra JR, Linehan WM: Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA. 1994, 91: 9700-9704. 10.1073/pnas.91.21.9700
PubMed Central
CAS
PubMed
Google Scholar
Alleman WG, Tabios RL, Chandramouli GV, Aprelikova ON, Torres-Cabala C, Mendoza A, Rogers C, Sopko NA, Linehan WM, Vasselli JR: The in vitro and in vivo effects of reexpressing methylated von Hippel-Lindau tumor suppressor gene in clear cell renal carcinoma with 5-aza-20-deoxycytidine. Clin Cancer Res. 2004, 10: 7011-7021. 10.1158/1078-0432.CCR-04-0516
CAS
PubMed
Google Scholar
Li Q, Ahuja N, Burger PC, Issa JP: Methylation and silencing of the Thrombospondin-1 promoter in human cancer. Oncogene. 1999, 18: 3284-3289. 10.1038/sj.onc.1202663
CAS
PubMed
Google Scholar
Kissil JL, Feinstein E, Cohen O, Jones PA, Tsai YC, Knowles MA, Eydmann ME, Kimchi A: DAP-kinase loss of expression in various carcinoma and B-cell lymphoma cell lines: possible implications for role as tumor suppressor gene. Oncogene. 1997, 15: 403-407. 10.1038/sj.onc.1201172
CAS
PubMed
Google Scholar
Katzenellenbogen RA, Baylin SB, Herman JG: Hypermethylation of the DAP-kinase CpG island is a common alteration in B-cell malignancies. Blood. 1999, 93: 4347-4353.
CAS
PubMed
Google Scholar
Tang X, Sun SY, Wistuba II, Hong WK, Mao L: Hypermethylation of the deathassociated protein kinase promoter attenuates the sensitivity to TRAIL-induced apoptosis in human non-small cell lung cancer cells. Mol Cancer Res. 2004, 2: 685-691.
CAS
PubMed
Google Scholar
Reu FJ, Bae SI, Cherkassky L, Leaman DW, Lindner D, Beaulieu N, MacLeod AR, Borden EC: Overcoming resistance to interferon-induced apoptosis of renal carcinoma and melanoma cells by DNA demethylation. J Clin Oncol. 2006, 24: 3771-3779. 10.1200/JCO.2005.03.4074
CAS
PubMed
Google Scholar
Reu FJ, Leaman DW, Maitra RR, Bae SI, Cherkassky L, Fox MW, Rempinski DR, Beaulieu N, MacLeod AR, Borden EC: Expression of RASSF1A, an epigenetically silenced tumor suppressor, overcomes resistance to apoptosis induction by interferons. Cancer Res. 2006, 66: 2785-2793. 10.1158/0008-5472.CAN-05-2303
PubMed Central
CAS
PubMed
Google Scholar
Hopkins-Donaldson S, Bodmer JL, Bourloud KB, Brognara CB, Tschopp J, Gross N: Loss of caspase-8 expression in highly malignant human neuroblastoma cells correlates with resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Cancer Res. 2000, 60: 4315-4319.
CAS
PubMed
Google Scholar
Fulda S, Kufer MU, Meyer E, van Valen F, Dockhorn-Dworniczak B, Debatin KM: Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene. 2001, 20: 5865-5877. 10.1038/sj.onc.1204750
CAS
PubMed
Google Scholar
Eramo A, Pallini R, Lotti F, Sette G, Patti M, Bartucci M, Ricci-Vitiani L, Signore M, Stassi G, Larocca LM, Crino L, Peschle C, De Maria R: Inhibition of DNA methylation sensitizes glioblastoma for tumor necrosis factor-related apoptosis-inducing ligand mediated destruction. Cancer Res. 2005, 65: 11469-11477. 10.1158/0008-5472.CAN-05-1724
CAS
PubMed
Google Scholar
Sen R, Baltimore D: Inducibility of kappa immunoglobulin enhancer-binding protein NF-kappa B by a posttranslational mechanism. Cell. 1986, 47: 921-928. 10.1016/0092-8674(86)90807-X
CAS
PubMed
Google Scholar
Criswell T, Leskov K, Miyamoto S, Luo G, Boothman DA: Transcription factors activated in mammalian cells after clinically relevant doses of ionizing radiation. Oncogene. 2003, 22: 5813-5827. 10.1038/sj.onc.1206680
CAS
PubMed
Google Scholar
Jung M, Dritschilo A: NF-kappa B signaling pathway as a target for human tumor radiosensitization. Semin Radiat Oncol. 2001, 11: 346-351. 10.1053/srao.2001.26034
CAS
PubMed
Google Scholar
Orlowski RZ, Baldwin AS: NF-kappaB as a therapeutic target in cancer. Trends Mol Med. 2002, 8: 385-389. 10.1016/S1471-4914(02)02375-4
CAS
PubMed
Google Scholar
Khong T, Sharkey J, Spencer A: The effect of azacitidine on interleukin-6 signaling and nuclear factor-kB activation and its in vitro and in vivo activity against multiple myeloma. Haematologica. 2008, 93: 860-869. 10.3324/haematol.12261
CAS
PubMed
Google Scholar
Sharkey J, Khong T, Spencer A: PKC412 demonstrates JNK-dependent activity against human multiple myeloma cells. Blood. 2006, 109: 1712-9. 10.1182/blood-2006-05-014092
PubMed
Google Scholar
Mitsiades N, Mitsiades CS, Richardson PG, Poulaki V, Tai YT, Chauhan D, Fanourakis G, Gu X, Bailey C, Joseph M, Libermann TA, Schlossman R, Munshi NC, Hideshima T, Anderson KC: The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood. 2003, 101: 2377-80. 10.1182/blood-2002-06-1768
CAS
PubMed
Google Scholar
Martin-Oliva D, Aguilar-Quesada R, O'valle F, Munoz-Gamez JA, Martinez-Romero R, Garcia Del Moral R, Ruiz de Almodóvar JM, Villuendas R, Piris MA, Oliver FJ: Inhibition of poly(ADP-ribose) polymerase modulates tumor-related gene expression, including hypoxia-inducible factor-1 activation, during skin carcinogenesis. Cancer Res. 2006, 66: 5744-5756. 10.1158/0008-5472.CAN-05-3050
CAS
PubMed
Google Scholar
Vo QN, Kim WJ, Cvitanovic L: The ATM gene is target for epigenetic silencing in locally advanced breast cancer. Oncogene. 2004, 23: 9432-9437. 10.1038/sj.onc.1208092
CAS
PubMed
Google Scholar
Kim WJ, Vo QN, Shrivastav M, Lataxes TA, Brown KD: Aberrant methylation of the ATM promoter correlates with increased radiosensitivity in a human colorectal tumor cell line. Oncogene. 2002, 21: 3864-3871. 10.1038/sj.onc.1205485
CAS
PubMed
Google Scholar
Das P: Singal R DNA methylation and cancer. J Clin Oncol. 2004, 22: 4632-4642. 10.1200/JCO.2004.07.151
CAS
PubMed
Google Scholar
Dunn BK: Hypomethylation: one side of a larger picture. Ann N Y Acad Sci. 2003, 983: 28-42. 10.1111/j.1749-6632.2003.tb05960.x
CAS
PubMed
Google Scholar
Ehrlich M: DNA methylation in cancer: too much, but also too little. Oncogene. 2002, 21: 5400-5413. 10.1038/sj.onc.1205651
CAS
PubMed
Google Scholar
Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J: Induction of tumors in mice by genomic hypomethylation. Science. 2003, 30: 0:489-492. 10.1126/science.1083558.
Google Scholar
Nishigaki M, Aoyagi K, Danjoh I, Fukaya M, Yanagihara K: Discovery of aberrant expression of R-RAS by cancer-linked DNAhypomethylation in gastric cancer using microarrays. Cancer Res. 2005, 65: 2115-2124. 10.1158/0008-5472.CAN-04-3340
CAS
PubMed
Google Scholar
Lutz W, Leon J, Eilers M: Contributions of Myc to tumorigenesis. Biochimica et Biophysica Acta (BBA). 2002, 1602 (1): 61-71. 10.1016/S0304-419X(02)00036-7.
CAS
Google Scholar
Wang J, Whang H, Li Z, Wu Q: c-Myc is required for maintenance of glioma cancer stem cells. PLoS ONE. 2008, 3: e3769- 10.1371/journal.pone.0003769
PubMed Central
PubMed
Google Scholar
Jupin P, Heber AO, Littelwood T, Evan G: c-Myc-induced sensitization to apoptosis is mediated through cytocrome c release. Genes Dev. 1999, 13: 1367-1381. 10.1101/gad.13.11.1367
Google Scholar
Bucci B, D'Agnano I, Amendola D, Citti A: Myc down-regulation sensitizes melanoma cells to radiotherapy by inhibiting MLH1 and MSH2 mismatch repair proteins. Clin Cancer Res. 2005, 11 (7): 2756-2767. 10.1158/1078-0432.CCR-04-1582
CAS
PubMed
Google Scholar
Fang JY, Yang L, Zhu HY, Chen YX, Lu J, Lu R: 5-Aza-2'-deoxycitidine indices demethylation and up-regulates transcription of p16INK4A gene in human gastric cancer cell lines. Chin Med J (Engl). 2009, 117 (1): 99-103.
Google Scholar
Heller G, Schmidt WM, Ziegler B, Holzer S, Mullauer L: Genome-wide transcriptional response to 5-Aza-2'-deoxycitdine and tricostatin A in multiple myeloma cells. Cancer Res. 2008, 68 (1): 44-54. 10.1158/0008-5472.CAN-07-2531
CAS
PubMed
Google Scholar
Eden A, Gaudet F, Waghmare A, Jaenisch R: Chromosomal instability and tumors promoted by DNA hypomethylation. Science. 2003, 300: 455- 10.1126/science.1083557
CAS
PubMed
Google Scholar
Yang AS, Estecio MR, Garcia-Manero G, Kantarjian HM, Issa JP: Comment on "Chromosomal instability and tumors promoted by DNA hypomethylation" and "Induction of tumors in mice by genomic hypomethylation". Science. 2003, 302: 1153- 10.1126/science.1089523
CAS
PubMed
Google Scholar
Http://www.vidaza.com/patient/default.aspx
Dagon® (decitabine for injection). http://www.supergen.com/
Cheng JC, Yoo CB, Weisenberger DJ, Chuang J, Wozniak C, Liang G, Marquez VE, Greer S, Orntoft TF, Thykjaer T, Jones PA: Preferential response of cancer cells to zebularine. Cancer Cell. 2004, 6: 151-158. 10.1016/j.ccr.2004.06.023
CAS
PubMed
Google Scholar
Karpf AR, Peterson PW, Rawlins JT, Dalley BK: Inhibition of DNA methyltransferase stimulates the expression of signal transduction and activator transcription 1, 2 and 3 genes in colon tumor cells. Proc Natl Acad Sci. 1999, 96: 14007-1412. 10.1073/pnas.96.24.14007
PubMed Central
CAS
PubMed
Google Scholar
Karpf AR, Lasek AW, Ririe TO, Hanks AN: Limited gene activation in tumor and normal epithelial cells treated with the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine. Molecular Parmacology. 2004, 65: 18-27. 10.1124/mol.65.1.18.
CAS
Google Scholar
Motegi K, Azuma M, Tamatani T, Ashida Y, Sato M: Expression of aquaporin-5 and fluid secretion from immortalized human salivary gland cells by treatment with 5-Aza2'-deoxycytidine: a possibility for improvement of xerostomia in patients with Sjogren syndrome. Lab Investigation. 2005, 85: 342-353. 10.1038/labinvest.3700234.
CAS
Google Scholar
Benyon RC, Arthur MJ: Extracellular matrix degradation and the role of hepatic stellate cells. Semin Liver Dis. 2001, 21: 373-384. 10.1055/s-2001-17552
CAS
PubMed
Google Scholar
Hazra S, Xiong S, Wang J: Peroxisome proliferator-activated receptor gamma induces a phenotypic switch from activated to quiescent hepatic stellate cells. J Biol Chem. 2004, 27 (9): 11392-11401. 10.1074/jbc.M310284200.
Google Scholar
Mann J, Oakley F, Akiboye F, Elsharkawy A, Thorne AW, Mann DA: Regulation of myofibroblast transdifferentiation by DNA methylation and MePC2: implication for wound healing and fribrinogenesis. Cell Death and Differentiation. 2007, 14: 275-285. 10.1038/sj.cdd.4401979
CAS
PubMed
Google Scholar
Liberto M, Cobrinik D: Growth factor-dependent induction of p21CIP1 by the green tea polyphenol, epigallocatechin gallate. Cancer Lett. 2000, 154: 151-161. 10.1016/S0304-3835(00)00378-5
CAS
PubMed
Google Scholar
Sang S, Hou Z, Lambert JD, Yang CS: Redox Properties of Tea Polyphenols and Related Biological Activities. Antioxidants & Redox Signaling. 2005, 7: 1704-1714.
CAS
Google Scholar
Lambert JD, Sang S, Yang CS: Possible Controversy over Dietary Polyphenols: Benefits vs Risks. Chem Res Toxicol. 2007, 20: 583-585. 10.1021/tx7000515
CAS
PubMed
Google Scholar
Sang S, Lambert JD, Hong J, Tian S, Lee MJ, Stark RE, Ho CT, Yang CS: Synthesis and Structure Identification of Thiol Conjugates of (-)-Epigallocatechin Gallate and Their Urinary Levels in Mice. Chem Res Toxicol. 2005, 18: 1762-176. 10.1021/tx050151l
CAS
PubMed
Google Scholar
Sang S, Hou Z, Lambert JD, Yang CS: Redox Properties of Tea Polyphenols and Related Biological Activities. Antioxidants & Redox Signaling. 2005, 7: 1704-1714.
CAS
Google Scholar
Isbrucker RA, Edwards JA, Wolz E, Davidovich A, Bausch J: Safety studies on epigallocatechin gallate (EGCG) preparations. Part 2: dermal, acute and short-term toxicity studies. Food Chem Toxicol. 2006, 44: 636-650. 10.1016/j.fct.2005.11.003
CAS
PubMed
Google Scholar
Yamamoto T, Hsu S, Lewis J, Wataha J: Green Tea Polyphenol Causes Differential Oxidative Environments in Tumor versus Normal Epithelial Cells. Journal of Pharmacology and Experimental therapeutics. 2003, 307: 230-237. 10.1124/jpet.103.054676
CAS
PubMed
Google Scholar
Yang CS, Lee MJ, Chen L: Human salivary tea catechin levels and catechin esterase activities: implication in human cancer prevention studies. Cancer Epidemiol Biomarkers Prev. 1999, 8: 83-89.
CAS
PubMed
Google Scholar
Yamamoto T, Hsu S, Lewis J, Wataha J: Green Tea Polyphenol Causes Differential Oxidative Environments in Tumor versus Normal Epithelial Cells. Journal of Pharmacology and Experimental therapeutics. 2003, 307: 230-237. 10.1124/jpet.103.054676
CAS
PubMed
Google Scholar
Pohlmann P, DiLeone LP, Cancella AI, Caldas AP: Phase II trial of cisplatin plus decitabine, a new DNA hypomethylating agent, in patients with advanced squamous cell carcinoma of the cervix. Am J Clin Oncol. 2002, 25: 496-501. 10.1097/00000421-200210000-00015
PubMed
Google Scholar
Tikoo K, Yunus Ali I, Gupta J, Gupta C: 5-Azaytidine prevents Cisplatin induced nephrotoxicity and potentiates anticancer activity of Cisplatin by involving inhibition of metallothionenin, pAKT and DNMT1 expression in chemical induced cancer rats. Toxicology Letters. 2009, 191: 158-166. 10.1016/j.toxlet.2009.08.018
CAS
PubMed
Google Scholar
Qui H, Hashimiro M, Shinto O, Matsuzaki T, Hirakawa K: DNA methyltransferase inhibitor 5-Aza-CdR enhances the radiosensitivity of gastric cancer cells. Cancer Sci. 2009, 100: 181-188. 10.1111/j.1349-7006.2008.01004.x
Google Scholar
Santi DV, Garret CE, Barr Pj: On the mechanism of inhibition of DNA cytosine methyltransferase by cytosine anlogs. Cell. 1983, 33: 9-10. 10.1016/0092-8674(83)90327-6
CAS
PubMed
Google Scholar
Christman JK: 5-azacytidine and 5-Aza-2'deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 2002, 21: 5483-5495. 10.1038/sj.onc.1205699
CAS
PubMed
Google Scholar
Karpf AR, Moore BC, Ririe TO, Jones DA: Activation of the p53 DNA damage response pathway after inhibition of DNA methyltransferase by 5-Aza-2'-deoxycytidine. Mol Pharmacol. 2001, 59: 751-757.
CAS
PubMed
Google Scholar
Neylon C, Kralicek AV, Hill TM, Dixon NE: Replication termination in Escherichia coli: structure and antihelicase activity of the Tus-Ter complex. Microbiol Mol Biol Rev. 2005, 69: 501-526. 10.1128/MMBR.69.3.501-526.2005
PubMed Central
CAS
PubMed
Google Scholar
Siaglotti L, Fratta E, Coral S, Cortini E, Covre A, Nicolay HY, Anzalone L, Pezzani L, Di Giacomo AM, Fonsatti E, Coalizzi F, Altomonte M, Calbrò L, Maio M: Epigenetic Drugs as Pleiotropic Agents in Cancer Treatment: Biomolecular Aspects and Clinical Applications. J Cell Physiol. 2007, 212: 330-344. 10.1002/jcp.21066
Google Scholar
Mund C, Brueckner B, Lyko F: Reactivation of Epigenetically Silenced Genes by DNA Methyltransferase Inhibitors: Basic Concepts and Clinical Applications. Epigenetics. 2006, 1: 1-7-13, 10.4161/epi.1.1.2375
Google Scholar
Griffiths EA, Gore SV: DNA Methyltransferase and Histone Deacetylase Inhibitors in the Treatment of Myelodysplastic Syndromes. Semin Hematol. 2008, 45 (1): 23-30. 10.1053/j.seminhematol.2007.11.007
PubMed Central
CAS
PubMed
Google Scholar