Ng RK, Gurdon JB. Epigenetic inheritance of cell differentiation status. Cell Cycle. 2008;7(9):1173–7.
Article
CAS
PubMed
Google Scholar
Wouters BJ, Delwel R. Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia. Blood. 2016;127(1):42–52.
Article
CAS
PubMed
Google Scholar
Li Y, Chen K, Zhou Y, et al. A new strategy to target acute myeloid leukemia stem and progenitor cells using chidamide, a histone deacetylase inhibitor. Curr Cancer Drug Targets. 2015;15(6):493–503.
Article
CAS
PubMed
Google Scholar
Xing J, Yi J, Cai X, et al. NSun2 promotes cell growth via elevating cyclin-dependent kinase 1 translation. Mol Cell Biol. 2015;35(23):4043–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, et al. The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature. 2016;530(7591):441–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Safra M, Sas-Chen A, Nir R, et al. The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature. 2017;551(7679):251–5.
Article
CAS
PubMed
Google Scholar
You C, Dai X, Wang Y. Position-dependent effects of regioisomeric methylated adenine and guanine ribonucleosides on translation. Nucleic Acids Res. 2017;45(15):9059–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin S, Liu Q, Lelyveld VS, et al. Mettl1/Wdr4-mediated m7G tRNA methylome is required for normal mRNA translation and embryonic stem cell self-renewal and differentiation. Mol Cell. 2018;71(2):244–55 e5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Batista PJ. The RNA Modification N6-methyladenosine and its implications in human disease. Genomics Proteomics Bioinformatics. 2017;15(3):154–63.
Article
PubMed
PubMed Central
Google Scholar
Boccaletto P, Machnicka MA, Purta E, et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018;46(D1):D303–7.
Article
CAS
PubMed
Google Scholar
Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA modifications in gene expression regulation. Cell. 2017;169(7):1187–200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adhikari S, Xiao W, Zhao YL, et al. m6A: signaling for mRNA splicing. RNA Biol. 2016;13(9):756–9.
Article
PubMed
PubMed Central
Google Scholar
Genenncher B, Durdevic Z, Hanna K, et al. Mutations in cytosine-5 tRNA methyltransferases impact mobile element expression and genome stability at specific DNA repeats. Cell Rep. 2018;22(7):1861–74.
Article
CAS
PubMed
Google Scholar
Ke S, Alemu EA, Mertens C, et al. A majority of m6A residues are in the last exons, allowing the potential for 3’UTR regulation. Genes Dev. 2015;29(19):2037.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ke S, Pandya-Jones A, Saito Y, et al. m6A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes Dev. 2017;31(10):990–1006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974;71(10):3971–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485(7397):201–6.
Article
CAS
PubMed
Google Scholar
Meyer KD, Saletore Y, Zumbo P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3’UTRs and near stop codons. Cell. 2012;149(7):1635–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Yue Y, Han D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10(2):93–5.
Article
CAS
PubMed
Google Scholar
Ping XL, Sun BL, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24(2):177–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwartz S, Mumbach MR, Jovanovic M, et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep. 2014;8(1):284–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang P, Doxtader KA, Nam Y. Structural basis for cooperative function of METTL3 and METTL14 methyltransferases. Mol Cell. 2016;63(2):306–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barbieri I, Tzelepis K, Pandolfini L, et al. Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature. 2017;552(7683):126–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weng H, Huang H, Wu H, et al. Mettl14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6A modification. Cell Stem Cell. 2018;22(2):191–205e199.
Article
CAS
PubMed
Google Scholar
Pendleton KE, Chen B, Liu K, et al. The U6 snRNA m(6) a methyltransferase METTL16 regulates SAM synthetase intron retention. Cell. 2017;169(5):824–835e14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patil DP, Chen CK, Pickering BF, et al. M(6) A RNA methylation promotes XIST-mediated transcriptional repression. Nature. 2016;537(7620):369–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7(12):885–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng G, Dahl JA, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;9(1):18–29.
Article
CAS
Google Scholar
Torres IO, Fujimori DG. Functional coupling between writers, erasers and readers of histone and DNA methylation. Curr Opin Struct Biol. 2015;35:68–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Lu Z, Gomez A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505:117–20.
Article
PubMed
CAS
Google Scholar
Wang X, Zhao BS, Roundtree IA, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 2015;161(6):1388–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma JZ, Yang F, Zhou CC, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-Methyladenosine-dependent primary MicroRNA processing. Hepatology. 2017;65(2):529–43.
Article
CAS
PubMed
Google Scholar
Yang Z, Li J, Feng G, et al. MicroRNA-145 Modulates N6-methyladenosine Levels by Targeting the 3′-Untranslated mRNA Region of the N6-methyladenosine–binding YTH Domain Family 2. Protein J Biol Chem. 2017;292(9):3614–23.
Article
CAS
PubMed
Google Scholar
Lin S, Liu J, Jiang W, et al. METTL3 promotes the proliferation and mobility of gastric cancer cells. Open Med (Wars). 2019;14:25–31.
Article
Google Scholar
Zhang C, Zhang M, Ge S, et al. Reduced m6A modification predicts malignant phenotypes and augmented Wnt/PI3K-Akt signaling in gastric cancer. Cancer Med. 2019;8(10):4766–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu T, Yang S, Sui J, et al. Dysregulated N6-methyladenosine methylation writer METTL3 contributes to the proliferation and migration of gastric cancer. J Cell Physiol. 2020;235(1):548–62.
Article
PubMed
CAS
Google Scholar
Li T, Hu PS, Zuo Z, et al. METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer. 2019;18(1):112.
Article
PubMed
PubMed Central
CAS
Google Scholar
Deng R, Cheng Y, Ye S, et al. m6A methyltransferase METTL3 suppresses colorectal cancer proliferation and migration through p38/ERK pathways. Onco Targets Ther. 2019;12:4391–402.
Article
PubMed
PubMed Central
Google Scholar
Nishizawa Y, Konno M, Asai A, et al. Oncogene c-Myc promotes epitranscriptome m6A reader YTHDF1 expression in colorectal cancer. Oncotarget. 2017;9(7):7476–86.
PubMed
PubMed Central
Google Scholar
Bai Y, Yang C, Wu R, et al. YTHDF1 regulates Tumorigenicity and Cancer stem cell-like activity in human colorectal carcinoma. Front Oncol. 2019;9:332.
Article
PubMed
PubMed Central
Google Scholar
Chen J, Sun Y, Xu X, et al. YTH domain family 2 orchestrates epithelial-mesenchymal transition/proliferation dichotomy in pancreatic cancer cells. Cell Cycle. 2017;16(23):2259–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang X, Liu S, Chen D, et al. The role of the fat mass and obesity-associated protein in the proliferation of pancreatic cancer cells. Oncol Lett. 2019;17(2):2473–8.
CAS
PubMed
Google Scholar
Du H, Zhao Y, He J, et al. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun. 2016;7:12626.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen M, Wei L, Law CT, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 2018;67(6):2254–70.
Article
CAS
PubMed
Google Scholar
Cui M, Sun J, Hou J, et al. The suppressor of cytokine signaling 2 (SOCS2) inhibits tumor metastasis in hepatocellular carcinoma. Tumour Biol. 2016;37(10):13521–31.
Article
CAS
PubMed
Google Scholar
Cheng X, Li M, Rao X, et al. KIAA1429 regulates the migration and invasion of hepatocellular carcinoma by altering m6A modification of ID2 mRNA. Onco Targets Ther. 2019;12:3421–8.
Article
PubMed
PubMed Central
Google Scholar
Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.
Article
PubMed
Google Scholar
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–32.
Article
PubMed
Google Scholar
Zhang J, Guo S, Piao HY, et al. ALKBH5 promotes invasion and metastasis of gastric cancer by decreasing methylation of the lncRNA NEAT1. J Physiol Biochem. 2019;75(3):379–389.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
Article
PubMed
Google Scholar
Siegel R. Desantis, Jemal a. colorectal cancer statistics, 2014. CA Cancer J Clin. 2014;64(2):104–17.
Article
PubMed
Google Scholar
Justilien V, Walsh MP, Ali SA, et al.The PRKCI and SOX2 oncogenes are coamplified and cooperate to activate Hedgehog signaling in lung squamous cell carcinoma.Send toCancer Cell. 2014;25(2):139–151.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5.
Article
CAS
PubMed
Google Scholar
Lowenfels AB, Maisonneuve P. Epidemiology and risk factors for pancreatic cancer. Best Pract Res Clin Gastroenterol. 2006;20(2):197–209.
Article
PubMed
Google Scholar
Wei P, Tang H, Li D. Insights into pancreatic cancer etiology from pathway analysis of genome-wide association study data. PLoS One. 2012;7(10):e46887.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou Y, Yin Z, Hou B, et al. Expression profiles and prognostic significance of RNA N6-methyladenosine-related genes in patients with hepatocellular carcinoma: evidence from independent datasets. Cancer Manag Res. 2019;11:3921–31.
Article
PubMed
PubMed Central
Google Scholar
Zhao X, Chen Y, Mao Q, et al. Overexpression of YTHDF1 is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Biomark. 2018;21(4):859–68.
Article
CAS
PubMed
Google Scholar
Li Y, Zheng D, Wang F, Xu Y, et al. Expression of Demethylase genes, FTO and ALKBH1, is associated with prognosis of gastric Cancer. Dig Dis Sci. 2019;64(6):1503–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu D, Shao W, Jiang Y, et al. FTO expression is associated with the occurrence of gastric cancer and prognosis. Oncol Rep. 2017;38(4):2285–92.
Article
CAS
PubMed
Google Scholar
Cho SH, Ha M, Cho YH, et al. ALKBH5 gene is a novel biomarker that predicts the prognosis of pancreatic cancer: a retrospective multicohort study. Ann Hepatobiliary Pancreat Surg. 2018;22(4):305–9.
Article
PubMed
PubMed Central
Google Scholar
Zhu L, Zhu Y, Han S, et al. Impaired autophagic degradation of lncRNA ARHGAP5-AS1 promotes chemoresistance in gastric cancer. Cell Death Dis. 2019;10(6):383.
Article
PubMed
PubMed Central
CAS
Google Scholar
Taketo K, Konno M, Asai A, et al. The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells. Int J Oncol. 2018;52(2):621–9.
PubMed
Google Scholar
Han D, Liu J, Chen C, et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature. 2019;566(7743):270–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen B, Ye F, Yu L, et al. Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor. J Am Chem Soc. 2012;134(43):17963e17971.
Google Scholar
Zhao BB, Guo HJ, Liu Y, et al. A novel benzoxazole derivative, exhibits anti-inflammatory properties via inhibiting GSK3beta activity in LPS-induced RAW264.7 macrophages. J Cell Biochem. 2018;119(7):5382–90.
Article
CAS
PubMed
Google Scholar
Yu R, Li Q, Feng Z. m6A Reader YTHDF2 Regulates LPS-Induced Inflammatory Response. Int J Mol Sci. 2019;20(6):E1323.
Article
PubMed
Google Scholar