Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30. https://doi.org/10.3322/caac.21590.
Article
PubMed
Google Scholar
Wang S, Du M, Zhang J, Xu W, Yuan Q, Li M, Wang J, Zhu H, Wang Y, Wang C, et al. Tumor evolutionary trajectories during the acquisition of invasiveness in early stage lung adenocarcinoma. Nat Commun. 2020;11:6083. https://doi.org/10.1038/s41467-020-19855-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zappa C, Mousa SA. Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res. 2016;5:288–300. https://doi.org/10.21037/tlcr.2016.06.07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008;83:584–94. https://doi.org/10.4065/83.5.584.
Article
PubMed
Google Scholar
Lantuejoul S, Fernandez-Cuesta L, Damiola F, Girard N, McLeer A. New molecular classification of large cell neuroendocrine carcinoma and small cell lung carcinoma with potential therapeutic impacts. Transl Lung Cancer Res. 2020;9:2233–44. https://doi.org/10.21037/tlcr-20-269.
Article
CAS
PubMed
PubMed Central
Google Scholar
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34. https://doi.org/10.3322/caac.21551.
Article
PubMed
Google Scholar
Rudin CM, Poirier JT, Byers LA, Dive C, Dowlati A, George J, Heymach JV, Johnson JE, Lehman JM, MacPherson D, et al. Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat Rev Cancer. 2019;19:289–97. https://doi.org/10.1038/s41568-019-0133-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar V, Yadavilli S, Kannan R. A review on RNAi therapy for NSCLC: Opportunities and challenges. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020:e1677. https://doi.org/10.1002/wnan.1677.
van Meerbeeck JP, Fennell DA, De Ruysscher DK. Small-cell lung cancer. Lancet. 2011;378:1741–55. https://doi.org/10.1016/S0140-6736(11)60165-7.
Article
PubMed
Google Scholar
Sabari JK, Lok BH, Laird JH, Poirier JT, Rudin CM. Unravelling the biology of SCLC: implications for therapy. Nat Rev Clin Oncol. 2017;14:549–61. https://doi.org/10.1038/nrclinonc.2017.71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alanazi A, Yunusa I, Elenizi K, Alzarea AI. Efficacy and safety of tyrosine kinase inhibitors in advanced non-small-cell lung cancer harboring epidermal growth factor receptor mutation: a network meta-analysis. Lung Cancer Manag. 2020;10:LMT43. https://doi.org/10.2217/lmt-2020-0011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun X, Xu S, Yang Z, Zheng P, Zhu W. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors for the treatment of non-small cell lung cancer: a patent review (2014-present). Expert Opin Ther Pat. 2020:1–16. https://doi.org/10.1080/13543776.2021.1860210.
Harrison PT, Vyse S, Huang PH. Rare epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer. Semin Cancer Biol. 2020;61:167–79. https://doi.org/10.1016/j.semcancer.2019.09.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holderfield M. Efforts to Develop KRAS Inhibitors. Cold Spring Harb Perspect Med. 2018;8. https://doi.org/10.1101/cshperspect.a031864.
Yang H, Liang SQ, Schmid RA, Peng RW. New Horizons in KRAS-Mutant Lung Cancer: Dawn After Darkness. Front Oncol. 2019;9:953. https://doi.org/10.3389/fonc.2019.00953.
Article
PubMed
PubMed Central
Google Scholar
Gandhi L, Garassino MC. Pembrolizumab plus Chemotherapy in Lung Cancer. N Engl J Med. 2018;379:e18. https://doi.org/10.1056/NEJMc1808567.
Article
PubMed
Google Scholar
Denis MG, Bennouna J. Osimertinib for Front-Line Treatment of Locally Advanced or Metastatic EGFR-Mutant NSCLC Patients: Efficacy, Acquired Resistance and Perspectives for Subsequent Treatments. Cancer Manag Res. 2020;12:12593–602. https://doi.org/10.2147/CMAR.S218751.
Article
PubMed
PubMed Central
Google Scholar
Passaro A, Mok T, Peters S, Popat S, Ahn MJ, de Marinis F. Recent Advances on the Role of EGFR TKIs in the Management of NSCLC with Uncommon, non-exon 20 insertion EGFR Mutations. J Thorac Oncol. 2020. https://doi.org/10.1016/j.jtho.2020.12.002.
Khan P, Siddiqui JA, Maurya SK, Lakshmanan I, Jain M, Ganti AK, Salgia R, Batra SK, Nasser MW. Epigenetic landscape of small cell lung cancer: small image of a giant recalcitrant disease. Semin Cancer Biol. 2020. https://doi.org/10.1016/j.semcancer.2020.11.006.
Skoulidis F, Goldberg ME, Greenawalt DM, Hellmann MD, Awad MM, Gainor JF, Schrock AB, Hartmaier RJ, Trabucco SE, Gay L, et al. STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. Cancer Discov. 2018;8:822–35. https://doi.org/10.1158/2159-8290.CD-18-0099.
Article
CAS
PubMed
PubMed Central
Google Scholar
Auvray M, Auclin E, Barthelemy P, Bono P, Kellokumpu-Lehtinen P, Gross-Goupil M, De Velasco G, Powles T, Mouillet G, Vano YA, et al: Second-line targeted therapies after nivolumab-ipilimumab failure in metastatic renal cell carcinoma. Eur J Cancer 2019, 108:33-40. https://doi.org/10.1016/j.ejca.2018.11.031
Tokaca N, Wotherspoon A, Nicholson AG, Fotiadis N, Thompson L, Popat S. Lack of response to nivolumab in a patient with EGFR-mutant non-small cell lung cancer adenocarcinoma sub-type transformed to small cell lung cancer. Lung Cancer. 2017;111:65–8. https://doi.org/10.1016/j.lungcan.2017.07.012.
Article
PubMed
Google Scholar
Hellmann MD, Callahan MK, Awad MM, Calvo E, Ascierto PA, Atmaca A, Rizvi NA, Hirsch FR, Selvaggi G, Szustakowski JD, et al. Tumor Mutational Burden and Efficacy of Nivolumab Monotherapy and in Combination with Ipilimumab in Small-Cell Lung Cancer. Cancer Cell. 2018;33:853–61 e854. https://doi.org/10.1016/j.ccell.2018.04.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv Pharm Bull. 2017;7:339–48. https://doi.org/10.15171/apb.2017.041.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harrison PT, Huang PH. Exploiting vulnerabilities in cancer signalling networks to combat targeted therapy resistance. Essays Biochem. 2018;62:583–93. https://doi.org/10.1042/EBC20180016.
Article
PubMed
PubMed Central
Google Scholar
Shah K, Rawal RM. Genetic and Epigenetic Modulation of Drug Resistance in Cancer: Challenges and Opportunities. Curr Drug Metab. 2019;20:1114–31. https://doi.org/10.2174/1389200221666200103111539.
Article
CAS
PubMed
Google Scholar
Bukowski K, Kciuk M, Kontek R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int J Mol Sci. 2020;21. https://doi.org/10.3390/ijms21093233.
Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019;575:299–309. https://doi.org/10.1038/s41586-019-1730-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen M, Wang L, Wang F, Li F, Xia W, Gu H, Chen Y. Quick synthesis of a novel combinatorial delivery system of siRNA and doxorubicin for a synergistic anticancer effect. Int J Nanomed. 2019;14:3557–69. https://doi.org/10.2147/IJN.S198511.
Article
CAS
Google Scholar
Babu A, Munshi A, Ramesh R. Combinatorial therapeutic approaches with RNAi and anticancer drugs using nanodrug delivery systems. Drug Dev Ind Pharm. 2017;43:1391–401. https://doi.org/10.1080/03639045.2017.1313861.
Article
CAS
PubMed
PubMed Central
Google Scholar
Das M, Musetti S, Huang L. RNA Interference-Based Cancer Drugs: The Roadblocks, and the "Delivery" of the Promise. Nucleic Acid Ther. 2019;29:61–6. https://doi.org/10.1089/nat.2018.0762.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu S, Zang H, Zheng H, Wang W, Wen Q, Zhan Y, Yang Y, Ning Y, Wang H. Fan S: miR-4634 augments the anti-tumor effects of RAD001 and associates well with clinical prognosis of non-small cell lung cancer. Sci Rep. 2020;10:13079. https://doi.org/10.1038/s41598-020-70157-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xue W, Dahlman JE, Tammela T, Khan OF, Sood S, Dave A, Cai W, Chirino LM, Yang GR, Bronson R, et al. Small RNA combination therapy for lung cancer. Proc Natl Acad Sci U S A. 2014;111:E3553–61. https://doi.org/10.1073/pnas.1412686111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gu L, Deng ZJ, Roy S, Hammond PT. A Combination RNAi-Chemotherapy Layer-by-Layer Nanoparticle for Systemic Targeting of KRAS/P53 with Cisplatin to Treat Non-Small Cell Lung Cancer. Clin Cancer Res. 2017;23:7312–23. https://doi.org/10.1158/1078-0432.CCR-16-2186.
Article
CAS
PubMed
PubMed Central
Google Scholar
Juliano RL. Addressing cancer signal transduction pathways with antisense and siRNA oligonucleotides. NAR Cancer. 2020;2:zcaa025. https://doi.org/10.1093/narcan/zcaa025.
Article
PubMed
PubMed Central
Google Scholar
Kim JW, Marquez CP, Kostyrko K, Koehne AL, Marini K, Simpson DR, Lee AG, Leung SG, Sayles LC, Shrager J, et al. Antitumor activity of an engineered decoy receptor targeting CLCF1-CNTFR signaling in lung adenocarcinoma. Nat Med. 2019;25:1783–95. https://doi.org/10.1038/s41591-019-0612-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pastor F, Berraondo P, Etxeberria I, Frederick J, Sahin U, Gilboa E, Melero I. An RNA toolbox for cancer immunotherapy. Nat Rev Drug Discov. 2018;17:751–67. https://doi.org/10.1038/nrd.2018.132.
Article
CAS
PubMed
Google Scholar
Liang X, Li D, Leng S, Zhu X. RNA-based pharmacotherapy for tumors: From bench to clinic and back. Biomed Pharmacother. 2020;125:109997. https://doi.org/10.1016/j.biopha.2020.109997.
Article
CAS
PubMed
Google Scholar
Ligtenberg MA, Pico de Coana Y, Shmushkovich T, Yoshimoto Y, Truxova I, Yang Y, Betancur-Boissel M, Eliseev AV, Wolfson AD, Kiessling R. Self-Delivering RNAi Targeting PD-1 Improves Tumor-Specific T Cell Functionality for Adoptive Cell Therapy of Malignant Melanoma. Mol Ther. 2018;26:1482–93. https://doi.org/10.1016/j.ymthe.2018.04.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan S, Li D, Zhu X. Cancer immunotherapy: Pros, cons and beyond. Biomed Pharmacother. 2020;124:109821. https://doi.org/10.1016/j.biopha.2020.109821.
Article
PubMed
Google Scholar
Ajina R, Zahavi DJ, Zhang YW, Weiner LM. Overcoming malignant cell-based mechanisms of resistance to immune checkpoint blockade antibodies. Semin Cancer Biol. 2020;65:28–37. https://doi.org/10.1016/j.semcancer.2019.12.005.
Article
CAS
PubMed
Google Scholar
Porto EM, Komor AC, Slaymaker IM, Yeo GW. Base editing: advances and therapeutic opportunities. Nat Rev Drug Discov. 2020. https://doi.org/10.1038/s41573-020-0084-6.
Wang F, Zuroske T, Watts JK. RNA therapeutics on the rise. Nat Rev Drug Discov. 2020;19:441–2. https://doi.org/10.1038/d41573-020-00078-0.
Article
CAS
PubMed
Google Scholar
Bennett CF. Therapeutic Antisense Oligonucleotides Are Coming of Age. Annu Rev Med. 2019;70:307–21. https://doi.org/10.1146/annurev-med-041217-010829.
Article
CAS
PubMed
Google Scholar
Goff LA, Rinn JL. Linking RNA biology to lncRNAs. Genome Res. 2015;25:1456–65. https://doi.org/10.1101/gr.191122.115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bartel DP. Metazoan MicroRNAs. Cell. 2018;173:20–51. https://doi.org/10.1016/j.cell.2018.03.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Xie K, Zhou H, Wu Y, Li C, Liu Y, Liu Z, Xu Q, Liu S, Xiao D, Tao Y. Role of non-coding RNAs and RNA modifiers in cancer therapy resistance. Mol Cancer. 2020;19:47. https://doi.org/10.1186/s12943-020-01171-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin D, Guo J, Wu Y, Yang L, Wang X, Du J, Dai J, Chen W, Gong K, Miao S, et al. m (6) A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC. Mol Cancer. 2020;19:40. https://doi.org/10.1186/s12943-020-01161-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Batra R, Nelles DA, Roth DM, Krach F, Nutter CA, Tadokoro T, Thomas JD, Sznajder LJ, Blue SM, Gutierrez HL, et al. The sustained expression of Cas9 targeting toxic RNAs reverses disease phenotypes in mouse models of myotonic dystrophy type 1. Nat Biomed Eng. 2020. https://doi.org/10.1038/s41551-020-00607-7.
Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16:203–22. https://doi.org/10.1038/nrd.2016.246.
Article
CAS
PubMed
Google Scholar
Sahin U, Oehm P, Derhovanessian E, Jabulowsky RA, Vormehr M, Gold M, Maurus D, Schwarck-Kokarakis D, Kuhn AN, Omokoko T, et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature. 2020;585:107–12. https://doi.org/10.1038/s41586-020-2537-9.
Article
CAS
PubMed
Google Scholar
Liang W, Lin Z, Du C, Qiu D, Zhang Q. mRNA modification orchestrates cancer stem cell fate decisions. Mol Cancer. 2020;19:38. https://doi.org/10.1186/s12943-020-01166-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Akdeli N, Riemann K, Westphal J, Hess J, Siffert W, Bachmann HS. A 3'UTR polymorphism modulates mRNA stability of the oncogene and drug target Polo-like Kinase 1. Mol Cancer. 2014;13:87. https://doi.org/10.1186/1476-4598-13-87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skoulidis F, Heymach JV. Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy. Nat Rev Cancer. 2019;19:495–509. https://doi.org/10.1038/s41568-019-0179-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Li J, Zhou Y, Cao S, Ling X, Zhang Y, Nie W, Zhong H. Tumor genomics and response to chemotherapy in advanced non-small cell lung cancer with exon 20 insertion epidermal growth factor receptor mutations. Ann Transl Med. 2020;8:1297. https://doi.org/10.21037/atm-20-6172.
Article
CAS
PubMed
PubMed Central
Google Scholar
George J, Lim JS, Jang SJ, Cun Y, Ozretic L, Kong G, Leenders F, Lu X, Fernandez-Cuesta L, Bosco G, et al. Comprehensive genomic profiles of small cell lung cancer. Nature. 2015;524:47–53. https://doi.org/10.1038/nature14664.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu CR, Zhong WZ, Zhou Q, Zhang XC, Yang JJ, Wu YL. Heterogeneity of the resistance to gefitinib treatment in a non-small cell lung cancer patient with active epidermal growth factor receptor mutation. Thorac Cancer. 2017;8:51–3. https://doi.org/10.1111/1759-7714.12382.
Article
CAS
PubMed
Google Scholar
Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 2020;19:673–94. https://doi.org/10.1038/s41573-020-0075-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crooke ST, Witztum JL, Bennett CF, Baker BF. RNA-Targeted Therapeutics. Cell Metab. 2019;29:501. https://doi.org/10.1016/j.cmet.2019.01.001.
Article
CAS
PubMed
Google Scholar
Hewitt SL, Bai A, Bailey D, Ichikawa K, Zielinski J, Karp R, Apte A, Arnold K, Zacharek SJ, Iliou MS, et al. Durable anticancer immunity from intratumoral administration of IL-23, IL-36gamma, and OX40L mRNAs. Sci Transl Med. 2019;11. https://doi.org/10.1126/scitranslmed.aat9143.
Adams D, Gonzalez-Duarte A, O'Riordan WD, Yang CC, Ueda M, Kristen AV, Tournev I, Schmidt HH, Coelho T, Berk JL, et al. Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis. N Engl J Med. 2018;379:11–21. https://doi.org/10.1056/NEJMoa1716153.
Article
CAS
PubMed
Google Scholar
Sardh E, Harper P, Balwani M, Stein P, Rees D, Bissell DM, Desnick R, Parker C, Phillips J, Bonkovsky HL, et al. Phase 1 Trial of an RNA Interference Therapy for Acute Intermittent Porphyria. N Engl J Med. 2019;380:549–58. https://doi.org/10.1056/NEJMoa1807838.
Article
PubMed
Google Scholar
Shi H, Chai P, Jia R, Fan X. Novel insight into the regulatory roles of diverse RNA modifications: Re-defining the bridge between transcription and translation. Mol Cancer. 2020;19:78. https://doi.org/10.1186/s12943-020-01194-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crooke ST, Witztum JL, Bennett CF, Baker BF. RNA-Targeted Therapeutics. Cell Metab. 2018;27:714–39. https://doi.org/10.1016/j.cmet.2018.03.004.
Article
CAS
PubMed
Google Scholar
Liang XH, Shen W, Sun H, Migawa MT, Vickers TA, Crooke ST. Translation efficiency of mRNAs is increased by antisense oligonucleotides targeting upstream open reading frames. Nat Biotechnol. 2016;34:875–80. https://doi.org/10.1038/nbt.3589.
Article
CAS
PubMed
Google Scholar
Crooke ST. Molecular Mechanisms of Antisense Oligonucleotides. Nucleic Acid Ther. 2017;27:70–7. https://doi.org/10.1089/nat.2016.0656.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu H, Lima WF, Zhang H, Fan A, Sun H, Crooke ST. Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs. J Biol Chem. 2004;279:17181–9. https://doi.org/10.1074/jbc.M311683200
Article
CAS
PubMed
Google Scholar
Lockhart A, Pires VB, Bento F, Kellner V, Luke-Glaser S, Yakoub G, Ulrich HD, Luke B. RNase H1 and H2 Are Differentially Regulated to Process RNA-DNA Hybrids. Cell Rep. 2019;29:2890–900 e2895. https://doi.org/10.1016/j.celrep.2019.10.108.
Article
CAS
PubMed
Google Scholar
Lai F, Damle SS, Ling KK, Rigo F. Directed RNase H Cleavage of Nascent Transcripts Causes Transcription Termination. Mol Cell. 2020;77:1032–43 e1034. https://doi.org/10.1016/j.molcel.2019.12.029.
Article
CAS
PubMed
Google Scholar
Liang XH, Sun H, Nichols JG, Crooke ST. RNase H1-Dependent Antisense Oligonucleotides Are Robustly Active in Directing RNA Cleavage in Both the Cytoplasm and the Nucleus. Mol Ther. 2017;25:2075–92. https://doi.org/10.1016/j.ymthe.2017.06.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lima WF, Murray HM, Damle SS, Hart CE, Hung G, De Hoyos CL, Liang XH, Crooke ST: Viable RNaseH1 knockout mice show RNaseH1 is essential for R loop processing, mitochondrial and liver function. Nucleic Acids Res 2016, 44:5299-5312. https://doi.org/10.1093/nar/gkw350
Ruhanen H, Ushakov K, Yasukawa T. Involvement of DNA ligase III and ribonuclease H1 in mitochondrial DNA replication in cultured human cells. Biochim Biophys Acta. 1813;2011:2000–7. https://doi.org/10.1016/j.bbamcr.2011.08.008.
Article
CAS
Google Scholar
Hyjek M, Figiel M, Nowotny M. RNases H: Structure and mechanism. DNA Repair (Amst). 2019;84:102672. https://doi.org/10.1016/j.dnarep.2019.102672.
Article
CAS
Google Scholar
Cerritelli SM, Crouch RJ. RNases H: Multiple roles in maintaining genome integrity. DNA Repair (Amst). 2019;84:102742. https://doi.org/10.1016/j.dnarep.2019.102742.
Article
CAS
Google Scholar
Bennett CF, Swayze EE. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Ann Rev Pharmacol Toxicol. 2010;50:259–93. https://doi.org/10.1146/annurev.pharmtox.010909.105654.
Article
CAS
Google Scholar
Crooke ST, Wang S, Vickers TA, Shen W, Liang XH. Cellular uptake and trafficking of antisense oligonucleotides. Nat Biotechnol. 2017;35:230–7. https://doi.org/10.1038/nbt.3779.
Article
CAS
PubMed
Google Scholar
Juliano RL, Ming X, Nakagawa O: Cellular uptake and intracellular trafficking of antisense and siRNA oligonucleotides. Bioconjug Chem 2012, 23:147-157. https://doi.org/10.1021/bc200377d
Liang XH, Shen W, Crooke ST. Specific Increase of Protein Levels by Enhancing Translation Using Antisense Oligonucleotides Targeting Upstream Open Frames. Adv Exp Med Biol. 2017;983:129–46. https://doi.org/10.1007/978-981-10-4310-9_9.
Article
CAS
PubMed
Google Scholar
Liang XH, Sun H, Shen W, Wang S, Yao J, Migawa MT, Bui HH, Damle SS, Riney S, Graham MJ, et al. Antisense oligonucleotides targeting translation inhibitory elements in 5' UTRs can selectively increase protein levels. Nucleic Acids Res. 2017;45:9528–46. https://doi.org/10.1093/nar/gkx632.
Article
CAS
PubMed
PubMed Central
Google Scholar
Urbanski LM, Leclair N, Anczukow O. Alternative-splicing defects in cancer: Splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics. Wiley Interdiscip Rev RNA. 2018;9:e1476. https://doi.org/10.1002/wrna.1476.
Article
PubMed
PubMed Central
Google Scholar
Lim KH, Han Z, Jeon HY, Kach J, Jing E, Weyn-Vanhentenryck S, Downs M, Corrionero A, Oh R, Scharner J, et al. Antisense oligonucleotide modulation of non-productive alternative splicing upregulates gene expression. Nat Commun. 2020;11:3501. https://doi.org/10.1038/s41467-020-17093-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pradella D, Naro C, Sette C, Ghigna C. EMT and stemness: flexible processes tuned by alternative splicing in development and cancer progression. Mol Cancer. 2017;16:8. https://doi.org/10.1186/s12943-016-0579-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang XH, Nichols JG, Hsu CW, Vickers TA, Crooke ST. mRNA levels can be reduced by antisense oligonucleotides via no-go decay pathway. Nucleic Acids Res. 2019;47:6900–16. https://doi.org/10.1093/nar/gkz500.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stepniak-Konieczna E, Konieczny P, Cywoniuk P, Dluzewska J, Sobczak K. AON-induced splice-switching and DMPK pre-mRNA degradation as potential therapeutic approaches for Myotonic Dystrophy type 1. Nucleic Acids Res. 2020;48:2531–43. https://doi.org/10.1093/nar/gkaa007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aartsma-Rus A, Straub V, Hemmings R, Haas M, Schlosser-Weber G, Stoyanova-Beninska V, Mercuri E, Muntoni F, Sepodes B, Vroom E, Balabanov P. Development of Exon Skipping Therapies for Duchenne Muscular Dystrophy: A Critical Review and a Perspective on the Outstanding Issues. Nucleic Acid Ther. 2017;27:251–9. https://doi.org/10.1089/nat.2017.0682.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wan L, Dreyfuss G. Splicing-Correcting Therapy for SMA. Cell. 2017;170:5. https://doi.org/10.1016/j.cell.2017.06.028.
Article
CAS
PubMed
Google Scholar
Pagliarini V, Guerra M, Di Rosa V, Compagnucci C, Sette C: Combined treatment with the histone deacetylase inhibitor LBH589 and a splice-switch antisense oligonucleotide enhances SMN2 splicing and SMN expression in Spinal Muscular Atrophy cells. J Neurochem 2020, 153:264-275. https://doi.org/10.1111/jnc.14935
Georgilis A, Klotz S, Hanley CJ, Herranz N, Weirich B, Morancho B, Leote AC, D'Artista L, Gallage S, Seehawer M, et al. PTBP1-Mediated Alternative Splicing Regulates the Inflammatory Secretome and the Pro-tumorigenic Effects of Senescent Cells. Cancer Cell. 2018;34:85–102 e109. https://doi.org/10.1016/j.ccell.2018.06.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dhuri K, Bechtold C, Quijano E, Pham H, Gupta A, Vikram A, Bahal R. Antisense Oligonucleotides: An Emerging Area in Drug Discovery and Development. J Clin Med. 2020;9. https://doi.org/10.3390/jcm9062004.
Singh RN, Singh NN. Mechanism of Splicing Regulation of Spinal Muscular Atrophy Genes. Adv Neurobiol. 2018;20:31–61. https://doi.org/10.1007/978-3-319-89689-2_2.
Article
PubMed
PubMed Central
Google Scholar
Murdaca G, Tonacci A, Negrini S, Greco M, Borro M, Puppo F, Gangemi S. Effects of AntagomiRs on Different Lung Diseases in Human, Cellular, and Animal Models. Int J Mol Sci. 2019;20. https://doi.org/10.3390/ijms20163938.
Yoshioka K, Kunieda T, Asami Y, Guo H, Miyata H, Yoshida-Tanaka K, Sujino Y, Piao W, Kuwahara H, Nishina K, et al. Highly efficient silencing of microRNA by heteroduplex oligonucleotides. Nucleic Acids Res. 2019;47:7321–32. https://doi.org/10.1093/nar/gkz492.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11. https://doi.org/10.1038/35888.
Article
CAS
PubMed
Google Scholar
Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–8. https://doi.org/10.1038/35078107.
Article
CAS
PubMed
Google Scholar
Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci U S A. 2001;98:9742–7. https://doi.org/10.1073/pnas.171251798.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khvorova A, Watts JK. The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol. 2017;35:238–48. https://doi.org/10.1038/nbt.3765.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han X, Wang L, Li T, Zhang J, Zhang D, Li J, Xia Y, Liu Y, Tan W. Beyond Blocking: Engineering RNAi-Mediated Targeted Immune Checkpoint Nanoblocker Enables T-Cell-Independent Cancer Treatment. ACS Nano. 2020. https://doi.org/10.1021/acsnano.0c08022.
Zhang C, Zhao Y, Yang Y, Zhong C, Ji T, Duan J, Wang Y. RNAi mediated silencing of Nanog expression suppresses the growth of human colorectal cancer stem cells. Biochem Biophys Res Commun. 2020. https://doi.org/10.1016/j.bbrc.2020.11.101.
Wu SY, Lopez-Berestein G, Calin GA, Sood AK. RNAi therapies: drugging the undruggable. Sci Transl Med. 2014;6:240ps247. https://doi.org/10.1126/scitranslmed.3008362.
Article
Google Scholar
Finan C, Gaulton A, Kruger FA, Lumbers RT, Shah T, Engmann J, Galver L, Kelley R, Karlsson A, Santos R, et al. The druggable genome and support for target identification and validation in drug development. Sci Transl Med. 2017;9. https://doi.org/10.1126/scitranslmed.aag1166.
Setten RL, Rossi JJ, Han SP. The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov. 2019;18:421–46. https://doi.org/10.1038/s41573-019-0017-4.
Article
CAS
PubMed
Google Scholar
Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ. Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004;305:1437–41. https://doi.org/10.1126/science.1102513.
Article
CAS
PubMed
Google Scholar
Schurmann N, Trabuco LG, Bender C, Russell RB, Grimm D. Molecular dissection of human Argonaute proteins by DNA shuffling. Nat Struct Mol Biol. 2013;20:818–26. https://doi.org/10.1038/nsmb.2607.
Article
CAS
PubMed
Google Scholar
Olina AV, Kulbachinskiy AV, Aravin AA, Esyunina DM. Argonaute Proteins and Mechanisms of RNA Interference in Eukaryotes and Prokaryotes. Biochemistry (Mosc). 2018;83:483–97. https://doi.org/10.1134/S0006297918050024.
Article
CAS
Google Scholar
Wilson RC, Doudna JA. Molecular mechanisms of RNA interference. Annu Rev Biophys. 2013;42:217–39. https://doi.org/10.1146/annurev-biophys-083012-130404.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daugaard I, Hansen TB. Biogenesis and Function of Ago-Associated RNAs. Trends Genet. 2017;33:208–19. https://doi.org/10.1016/j.tig.2017.01.003.
Article
CAS
PubMed
Google Scholar
Salomon WE, Jolly SM, Moore MJ, Zamore PD, Serebrov V. Single-Molecule Imaging Reveals that Argonaute Reshapes the Binding Properties of Its Nucleic Acid Guides. Cell. 2015;162:84–95. https://doi.org/10.1016/j.cell.2015.06.029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Broughton JP, Lovci MT, Huang JL, Yeo GW, Pasquinelli AE. Pairing beyond the Seed Supports MicroRNA Targeting Specificity. Mol Cell. 2016;64:320–33. https://doi.org/10.1016/j.molcel.2016.09.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haraszti RA, Roux L, Coles AH, Turanov AA, Alterman JF, Echeverria D, Godinho B, Aronin N, Khvorova A. 5-Vinylphosphonate improves tissue accumulation and efficacy of conjugated siRNAs in vivo. Nucleic Acids Res. 2017;45:7581–92. https://doi.org/10.1093/nar/gkx507.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schirle NT, Kinberger GA, Murray HF, Lima WF, Prakash TP, MacRae IJ. Structural Analysis of Human Argonaute-2 Bound to a Modified siRNA Guide. J Am Chem Soc. 2016;138:8694–7. https://doi.org/10.1021/jacs.6b04454.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lima WF, Prakash TP, Murray HM, Kinberger GA, Li W, Chappell AE, Li CS, Murray SF, Gaus H, Seth PP, et al. Single-stranded siRNAs activate RNAi in animals. Cell. 2012;150:883–94. https://doi.org/10.1016/j.cell.2012.08.014.
Article
CAS
PubMed
Google Scholar
Yu D, Pendergraff H, Liu J, Kordasiewicz HB, Cleveland DW, Swayze EE, Lima WF, Crooke ST, Prakash TP, Corey DR. Single-stranded RNAs use RNAi to potently and allele-selectively inhibit mutant huntingtin expression. Cell. 2012;150:895–908. https://doi.org/10.1016/j.cell.2012.08.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alterman JF, Godinho B, Hassler MR, Ferguson CM, Echeverria D, Sapp E, Haraszti RA, Coles AH, Conroy F, Miller R, et al. A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system. Nat Biotechnol. 2019;37:884–94. https://doi.org/10.1038/s41587-019-0205-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Byrne M, Tzekov R, Wang Y, Rodgers A, Cardia J, Ford G, Holton K, Pandarinathan L, Lapierre J, Stanney W, et al. Novel hydrophobically modified asymmetric RNAi compounds (sd-rxRNA) demonstrate robust efficacy in the eye. J Ocul Pharmacol Ther. 2013;29:855–64. https://doi.org/10.1089/jop.2013.0148.
Article
CAS
PubMed
Google Scholar
Hong CA, Nam YS. Reducible Dimeric Conjugates of Small Internally Segment Interfering RNA for Efficient Gene Silencing. Macromol Biosci. 2016;16:1442–9. https://doi.org/10.1002/mabi.201600137.
Article
CAS
PubMed
Google Scholar
Levanova AA, Kalke KM, Lund LM, Sipari N, Sadeghi M, Nyman MC, Paavilainen H, Hukkanen V, Poranen MM. Enzymatically synthesized 2'-fluoro-modified Dicer-substrate siRNA swarms against herpes simplex virus demonstrate enhanced antiviral efficacy and low cytotoxicity. Antiviral Res. 2020;182:104916. https://doi.org/10.1016/j.antiviral.2020.104916.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bueno MJ, Malumbres M. MicroRNAs and the cell cycle. Biochim Biophys Acta. 1812;2011:592–601. https://doi.org/10.1016/j.bbadis.2011.02.002.
Article
CAS
Google Scholar
Bandi N, Vassella E. miR-34a and miR-15a/16 are co-regulated in non-small cell lung cancer and control cell cycle progression in a synergistic and Rb-dependent manner. Mol Cancer. 2011;10:55. https://doi.org/10.1186/1476-4598-10-55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ortiz-Quintero B. Extracellular MicroRNAs as Intercellular Mediators and Noninvasive Biomarkers of Cancer. Cancers (Basel). 2020;12. https://doi.org/10.3390/cancers12113455.
Svoronos AA, Engelman DM, Slack FJ. OncomiR or Tumor Suppressor? The Duplicity of MicroRNAs in Cancer. Cancer Res. 2016;76:3666–70. https://doi.org/10.1158/0008-5472.CAN-16-0359.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heyn GS, Correa LH, Magalhaes KG. The Impact of Adipose Tissue-Derived miRNAs in Metabolic Syndrome, Obesity, and Cancer. Front Endocrinol (Lausanne). 2020;11:563816. https://doi.org/10.3389/fendo.2020.563816.
Article
Google Scholar
Eliasson L, Esguerra JLS. MicroRNA Networks in Pancreatic Islet Cells: Normal Function and Type 2 Diabetes. Diabetes. 2020;69:804–12. https://doi.org/10.2337/dbi19-0016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao W, Stricker E, Hotz-Wagenblatt A, Heit-Mondrzyk A, Pougialis G, Hugo A, Kuzmak J, Materniak-Kornas M, Lochelt M. Functional Analyses of Bovine Foamy Virus-Encoded miRNAs Reveal the Importance of a Defined miRNA for Virus Replication and Host-Virus Interaction. Viruses. 2020;12. https://doi.org/10.3390/v12111250.
Bochnakian A, Zhen A, Zisoulis DG, Idica A, KewalRamani VN, Neel N, Daugaard I, Hamdorf M, Kitchen S, Lee K, Pedersen IM. Interferon-Inducible MicroRNA miR-128 Modulates HIV-1 Replication by Targeting TNPO3 mRNA. J Virol. 2019;93. https://doi.org/10.1128/JVI.00364-19.
van Westering TLE, Lomonosova Y, Coenen-Stass AML, Betts CA, Bhomra A, Hulsker M, Clark LE, McClorey G, Aartsma-Rus A, van Putten M, et al. Uniform sarcolemmal dystrophin expression is required to prevent extracellular microRNA release and improve dystrophic pathology. J Cachexia Sarcopenia Muscle. 2020;11:578–93. https://doi.org/10.1002/jcsm.12506.
Article
PubMed
Google Scholar
Eniafe J, Jiang S. MicroRNA-99 family in cancer and immunity. Wiley Interdiscip Rev RNA. 2020:e1635. https://doi.org/10.1002/wrna.1635.
Kim YK, Kim B, Kim VN. Re-evaluation of the roles of DROSHA, Export in 5, and DICER in microRNA biogenesis. Proc Natl Acad Sci U S A. 2016;113:E1881–9. https://doi.org/10.1073/pnas.1602532113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415–9. https://doi.org/10.1038/nature01957.
Article
CAS
PubMed
Google Scholar
Arif KMT, Elliott EK, Haupt LM, Griffiths LR. Regulatory Mechanisms of Epigenetic miRNA Relationships in Human Cancer and Potential as Therapeutic Targets. Cancers (Basel). 2020;12. https://doi.org/10.3390/cancers12102922.
Liang G, Weisenberger DJ. DNA methylation aberrancies as a guide for surveillance and treatment of human cancers. Epigenetics. 2017;12:416–32. https://doi.org/10.1080/15592294.2017.1311434.
Article
PubMed
PubMed Central
Google Scholar
Gerthoffer W. Epigenetic Targets for Oligonucleotide Therapies of Pulmonary Arterial Hypertension. Int J Mol Sci. 2020;21. https://doi.org/10.3390/ijms21239222.
Farooqi AA, Fayyaz S, Poltronieri P, Calin G, Mallardo M. Epigenetic deregulation in cancer: Enzyme players and non-coding RNAs. Semin Cancer Biol. 2020. https://doi.org/10.1016/j.semcancer.2020.07.013.
Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with 'antagomirs'. Nature. 2005;438:685–9. https://doi.org/10.1038/nature04303.
Article
CAS
PubMed
Google Scholar
Civenni G. Targeting Promoter-Associated Noncoding RNA In Vivo. Methods Mol Biol. 2017;1543:259–70. https://doi.org/10.1007/978-1-4939-6716-2_15.
Article
CAS
PubMed
Google Scholar
Schmidt MF. miRNA Targeting Drugs: The Next Blockbusters? Methods Mol Biol. 2017;1517:3–22. https://doi.org/10.1007/978-1-4939-6563-2_1.
Article
CAS
PubMed
Google Scholar
Lindow M, Kauppinen S. Discovering the first microRNA-targeted drug. J Cell Biol. 2012;199:407–12. https://doi.org/10.1083/jcb.201208082.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimakami T, Yamane D, Jangra RK, Kempf BJ, Spaniel C, Barton DJ, Lemon SM. Stabilization of hepatitis C virus RNA by an Ago2-miR-122 complex. Proc Natl Acad Sci U S A. 2012;109:941–6. https://doi.org/10.1073/pnas.1112263109.
Article
PubMed
PubMed Central
Google Scholar
Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science. 2005;309:1577–81. https://doi.org/10.1126/science.1113329.
Article
CAS
PubMed
Google Scholar
Jopling CL. Targeting microRNA-122 to Treat Hepatitis C Virus Infection. Viruses. 2010;2:1382–93. https://doi.org/10.3390/v2071382.
Article
CAS
PubMed
PubMed Central
Google Scholar
Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y, et al: Treatment of HCV infection by targeting microRNA. N Engl J Med 2013, 368:1685-1694. https://doi.org/10.1056/NEJMoa1209026
Ottosen S, Parsley TB, Yang L, Zeh K, van Doorn LJ, van der Veer E, Raney AK, Hodges MR, Patick AK: In vitro antiviral activity and preclinical and clinical resistance profile of miravirsen, a novel anti-hepatitis C virus therapeutic targeting the human factor miR-122. Antimicrob Agents Chemother 2015, 59:599-608. https://doi.org/10.1128/AAC.04220-14
van der Ree MH, de Vree JM, Stelma F, Willemse S, van der Valk M, Rietdijk S, Molenkamp R, Schinkel J, van Nuenen AC, Beuers U, et al. Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: a phase 1B, double-blind, randomised controlled trial. Lancet. 2017;389:709–17. https://doi.org/10.1016/S0140-6736(16)31715-9.
Article
CAS
PubMed
Google Scholar
Stelma F, van der Ree MH, Sinnige MJ, Brown A, Swadling L, JML d V, Willemse SB, van der Valk M, Grint P, Neben S, et al. Immune phenotype and function of natural killer and T cells in chronic hepatitis C patients who received a single dose of anti-MicroRNA-122, RG-101. Hepatology. 2017;66:57–68. https://doi.org/10.1002/hep.29148.
Article
CAS
PubMed
Google Scholar
Deng Y, Campbell F, Han K, Theodore D, Deeg M, Huang M, Hamatake R, Lahiri S, Chen S, Horvath G, et al. Randomized clinical trials towards a single-visit cure for chronic hepatitis C: Oral GSK2878175 and injectable RG-101 in chronic hepatitis C patients and long-acting injectable GSK2878175 in healthy participants. J Viral Hepat. 2020;27:699–708. https://doi.org/10.1111/jvh.13282.
Article
CAS
PubMed
Google Scholar
Lee EC, Valencia T, Allerson C, Schairer A, Flaten A, Yheskel M, Kersjes K, Li J, Gatto S, Takhar M, et al. Discovery and preclinical evaluation of anti-miR-17 oligonucleotide RGLS4326 for the treatment of polycystic kidney disease. Nat Commun. 2019;10:4148. https://doi.org/10.1038/s41467-019-11918-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gomez IG, MacKenna DA, Johnson BG, Kaimal V, Roach AM, Ren S, Nakagawa N, Xin C, Newitt R, Pandya S, et al. Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J Clin Invest. 2015;125:141–56. https://doi.org/10.1172/JCI75852.
Article
PubMed
Google Scholar
Seto AG, Beatty X, Lynch JM, Hermreck M, Tetzlaff M, Duvic M, Jackson AL. Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma. Br J Haematol. 2018;183:428–44. https://doi.org/10.1111/bjh.15547.
Article
CAS
PubMed
Google Scholar
Gallant-Behm CL, Piper J, Lynch JM, Seto AG, Hong SJ, Mustoe TA, Maari C, Pestano LA, Dalby CM, Jackson AL, et al. A MicroRNA-29 Mimic (Remlarsen) Represses Extracellular Matrix Expression and Fibroplasia in the Skin. J Invest Dermatol. 2019;139:1073–81. https://doi.org/10.1016/j.jid.2018.11.007.
Article
CAS
PubMed
Google Scholar
Wang Z. The principles of MiRNA-masking antisense oligonucleotides technology. Methods Mol Biol. 2011;676:43–9. https://doi.org/10.1007/978-1-60761-863-8_3.
Article
CAS
PubMed
Google Scholar
Crick F. Central dogma of molecular biology. Nature. 1970;227:561–3. https://doi.org/10.1038/227561a0.
Article
CAS
PubMed
Google Scholar
Digre A, Lindskog C. The Human Protein Atlas-Spatial localization of the human proteome in health and disease. Protein Sci. 2020. https://doi.org/10.1002/pro.3987.
Uhlen M, Karlsson MJ, Hober A, Svensson AS, Scheffel J, Kotol D, Zhong W, Tebani A, Strandberg L, Edfors F, et al. The human secretome. Sci Signal. 2019;12. https://doi.org/10.1126/scisignal.aaz0274.
Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics—developing a new class of drugs. Nat Rev Drug Discov. 2014;13:759–80.
Article
CAS
PubMed
Google Scholar
Ward RA, Fawell S, Floc'h N, Flemington V, McKerrecher D, Smith PD. Challenges and Opportunities in Cancer Drug Resistance. Chem Rev. 2020. https://doi.org/10.1021/acs.chemrev.0c00383.
Jahanafrooz Z, Baradaran B, Mosafer J, Hashemzaei M, Rezaei T, Mokhtarzadeh A, Hamblin MR. Comparison of DNA and mRNA vaccines against cancer. Drug Discov Tod. 2020;25:552–60.
Article
Google Scholar
Hajj KA, Whitehead KA. Tools for translation: non-viral materials for therapeutic mRNA delivery. Nat Rev Mat. 2017;2:1–17.
Google Scholar
Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discov. 2018;17:261.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu AM, Choi YH, Tu MJ. RNA Drugs and RNA Targets for Small Molecules: Principles, Progress, and Challenges. Pharmacol Rev. 2020;72:862–98. https://doi.org/10.1124/pr.120.019554.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weissman D, Ni H, Scales D, Dude A, Capodici J, McGibney K, Abdool A, Isaacs SN, Cannon G, Kariko K. HIV gag mRNA transfection of dendritic cells (DC) delivers encoded antigen to MHC class I and II molecules, causes DC maturation, and induces a potent human in vitro primary immune response. J Immunol. 2000;165:4710–7. https://doi.org/10.4049/jimmunol.165.8.4710.
Article
CAS
PubMed
Google Scholar
Kariko K, Ni H, Capodici J, Lamphier M, Weissman D. mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem. 2004;279:12542–50. https://doi.org/10.1074/jbc.M310175200.
Article
CAS
PubMed
Google Scholar
Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 2004;303:1526–9. https://doi.org/10.1126/science.1093620.
Article
CAS
PubMed
Google Scholar
Kramer MC, Anderson SJ, Gregory BD. The nucleotides they are a-changin': function of RNA binding proteins in post-transcriptional messenger RNA editing and modification in Arabidopsis. Curr Opin Plant Biol. 2018;45:88–95. https://doi.org/10.1016/j.pbi.2018.05.010.
Article
CAS
PubMed
Google Scholar
Sakurai M, Yano T, Okada S, Takeuchi Y, Suzuki T. RNA modification/editing and regulatory gene expression. Tanpakushitsu Kakusan Koso. 2009;54:2086–91.
CAS
PubMed
Google Scholar
Bokar JA, Rottman FM. Biosynthesis and functions of modified nucleosides in eukaryotic mRNA. In Modification and Editing of RNA. Am Soc Microbiol. 1998:183–200.
Kariko K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23:165–75. https://doi.org/10.1016/j.immuni.2005.06.008.
Article
CAS
PubMed
Google Scholar
Roundtree IA, He C. RNA epigenetics--chemical messages for posttranscriptional gene regulation. Curr Opin Chem Biol. 2016;30:46–51. https://doi.org/10.1016/j.cbpa.2015.10.024.
Article
CAS
PubMed
Google Scholar
Helm M, Motorin Y. Detecting RNA modifications in the epitranscriptome: predict and validate. Nat Rev Genet. 2017;18:275–91. https://doi.org/10.1038/nrg.2016.169.
Article
CAS
PubMed
Google Scholar
Saletore Y, Meyer K, Korlach J, Vilfan ID, Jaffrey S, Mason CE. The birth of the Epitranscriptome: deciphering the function of RNA modifications. Genome Biol. 2012;13:175. https://doi.org/10.1186/gb-2012-13-10-175.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwartz S. Cracking the epitranscriptome. RNA. 2016;22:169–74. https://doi.org/10.1261/rna.054502.115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505:117–20. https://doi.org/10.1038/nature12730.
Article
CAS
PubMed
Google Scholar
Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol. 2014;16:191–8. https://doi.org/10.1038/ncb2902.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilbert WV, Bell TA, Schaening C. Messenger RNA modifications: Form, distribution, and function. Science. 2016;352:1408–12. https://doi.org/10.1126/science.aad8711.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wen S, Wei Y, Zen C, Xiong W, Niu Y, Zhao Y. Long non-coding RNA NEAT1 promotes bone metastasis of prostate cancer through N6-methyladenosine. Mol Cancer. 2020;19:171. https://doi.org/10.1186/s12943-020-01293-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao X, Yang Y, Sun BF, Shi Y, Yang X, Xiao W, Hao YJ, Ping XL, Chen YS, Wang WJ, et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res. 2014;24:1403–19. https://doi.org/10.1038/cr.2014.151.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kariko K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, Weissman D. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008;16:1833–40. https://doi.org/10.1038/mt.2008.200.
Article
CAS
PubMed
Google Scholar
Eyler DE, Franco MK, Batool Z, Wu MZ, Dubuke ML, Dobosz-Bartoszek M, Jones JD, Polikanov YS, Roy B, Koutmou KS. Pseudouridinylation of mRNA coding sequences alters translation. Proc Natl Acad Sci U S A. 2019;116:23068–74. https://doi.org/10.1073/pnas.1821754116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoernes TP, Clementi N, Faserl K, Glasner H, Breuker K, Lindner H, Huttenhofer A, Erlacher MD. Nucleotide modifications within bacterial messenger RNAs regulate their translation and are able to rewire the genetic code. Nucleic Acids Res. 2016;44:852–62. https://doi.org/10.1093/nar/gkv1182.
Article
CAS
PubMed
Google Scholar
Shi Z, Barna M. Translating the genome in time and space: specialized ribosomes, RNA regulons, and RNA-binding proteins. Annu Rev Cell Dev Biol. 2015;31:31–54. https://doi.org/10.1146/annurev-cellbio-100814-125346.
Article
CAS
PubMed
Google Scholar
Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H, He C. N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell. 2015;161:1388–99. https://doi.org/10.1016/j.cell.2015.05.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB, Jaffrey SR. 5' UTR m (6) A Promotes Cap-Independent Translation. Cell. 2015;163:999–1010. https://doi.org/10.1016/j.cell.2015.10.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR, Qian SB. Dynamic m (6) A mRNA methylation directs translational control of heat shock response. Nature. 2015;526:591–4. https://doi.org/10.1038/nature15377.
Article
CAS
PubMed
PubMed Central
Google Scholar
Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu-Barnum S, Werner AP, Flach B, O'Connell S, Bock KW, Minai M, et al. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N Engl J Med. 2020;383:1544–55. https://doi.org/10.1056/NEJMoa2024671.
Article
CAS
PubMed
Google Scholar
Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, McCullough MP, Chappell JD, Denison MR, Stevens LJ, et al. An mRNA Vaccine against SARS-CoV-2 - Preliminary Report. N Engl J Med. 2020;383:1920–31. https://doi.org/10.1056/NEJMoa2022483.
Article
CAS
PubMed
Google Scholar
Corbett KS, Edwards DK, Leist SR, Abiona OM, Boyoglu-Barnum S, Gillespie RA, Himansu S, Schafer A, Ziwawo CT, DiPiazza AT, et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature. 2020;586:567–71. https://doi.org/10.1038/s41586-020-2622-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reck M, Mellemgaard A, von Pawel J, Gottfried M, Bondarenko I, Cheng Y, Zarogoulidis K, Luft A, Bennouna J, Barrueco J, et al: Anti-angiogenic-specific adverse events in patients with non-small cell lung cancer treated with nintedanib and docetaxel. Lung Cancer 2015, 90:267-273. https://doi.org/10.1016/j.lungcan.2015.08.003
Perdrizet K, Leighl NB. The Role of Angiogenesis Inhibitors in the Era of Immune Checkpoint Inhibitors and Targeted Therapy in Metastatic Non-Small Cell Lung Cancer. Curr Treat Options Oncol. 2019;20:21. https://doi.org/10.1007/s11864-019-0617-6.
Article
PubMed
Google Scholar
Jones BS, Jerome MS, Miley D, Jackson BE, DeShazo MR, Reddy VV, Singh KP, Brown OC, Robert F. Pilot phase II study of metronomic chemotherapy in combination with bevacizumab in patients with advanced non-squamous non-small cell lung cancer. Lung Cancer. 2017;106:125–30. https://doi.org/10.1016/j.lungcan.2017.02.004.
Article
PubMed
Google Scholar
Chen L, Qiu CH, Chen Y, Wang Y, Zhao JJ, Zhang M. LncRNA SNHG16 drives proliferation, migration, and invasion of lung cancer cell through modulation of miR-520/VEGF axis. Eur Rev Med Pharmacol Sci. 2020;24:9522–31. https://doi.org/10.26355/eurrev_202009_23037.
Article
CAS
PubMed
Google Scholar
Mei J, Liu G, Wang W, Xiao P, Yang D, Bai H, Li R. OIP5-AS1 modulates epigenetic regulator HDAC7 to enhance non-small cell lung cancer metastasis via miR-140-5p. Oncol Lett. 2020;20:7. https://doi.org/10.3892/ol.2020.11868.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang H, Yang W, Dai W, Ma Y, Zhang G. LINC00667 promotes the proliferation, migration, and pathological angiogenesis in non-small cell lung cancer through stabilizing VEGFA by EIF4A3. Cell Biol Int. 2020;44:1671–80. https://doi.org/10.1002/cbin.11361.
Article
CAS
PubMed
Google Scholar
Qin L, Zhong M, Adah D, Qin L, Chen X, Ma C, Fu Q, Zhu X, Li Z, Wang N, Chen Y. A novel tumour suppressor lncRNA F630028O10Rik inhibits lung cancer angiogenesis by regulating miR-223-3p. J Cell Mol Med. 2020;24:3549–59. https://doi.org/10.1111/jcmm.15044.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishola AA, La'ah AS, Le HD, Nguyen VQ, Yang YP, Chou SJ, Tai HY, Chien CS, Wang ML. Non-coding RNA and lung cancer progression. J Chin Med Assoc. 2020;83:8–14. https://doi.org/10.1097/JCMA.0000000000000225.
Article
CAS
PubMed
Google Scholar
Hou ZH, Xu XW, Fu XY, Zhou LD, Liu SP, Tan DM. Long non-coding RNA MALAT1 promotes angiogenesis and immunosuppressive properties of HCC cells by sponging miR-140. Am J Physiol Cell Physiol. 2020;318:C649–63. https://doi.org/10.1152/ajpcell.00510.2018.
Article
PubMed
Google Scholar
Mao Z, Xu B, He L, Zhang G. PVT1 Promotes Angiogenesis by Regulating miR-29c/Vascular Endothelial Growth Factor (VEGF) Signaling Pathway in Non-Small-Cell Lung Cancer (NSCLC). Med Sci Monit. 2019;25:5418–25. https://doi.org/10.12659/MSM.917601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Han D, Pan L, Sun J. The positive feedback between lncRNA TNK2-AS1 and STAT3 enhances angiogenesis in non-small cell lung cancer. Biochem Biophys Res Commun. 2018;507:185–92. https://doi.org/10.1016/j.bbrc.2018.11.004.
Article
CAS
PubMed
Google Scholar
Chen J, Liu A, Wang Z, Wang B, Chai X, Lu W, Cao T, Li R, Wu M, Lu Z, et al. LINC00173.v1 promotes angiogenesis and progression of lung squamous cell carcinoma by sponging miR-511-5p to regulate VEGFA expression. Mol Cancer. 2020;19:98. https://doi.org/10.1186/s12943-020-01217-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen M, Xie S, Rowicki M, Michel S, Wei Y, Hang X, Wan L, Lu X, Yuan M, Jin JF, et al. Therapeutic Targeting of Metadherin Suppresses Colorectal and Lung Cancer Progression and Metastasis. Cancer Res. 2020. https://doi.org/10.1158/0008-5472.CAN-20-1876.
Ge JH, Zhu JW, Fu HY, Shi WB, Zhang CL. An Antisense Oligonucleotide Drug Targeting miR-21 Induces H1650 Apoptosis and Caspase Activation. Technol Cancer Res Treat. 2019;18:1533033819892263. https://doi.org/10.1177/1533033819892263.
Article
PubMed
PubMed Central
Google Scholar
Zhou Y, Guo D, Zhang Y. Association of MicroRNA-21 with p53 at Mutant Sites R175H and R248Q, Clinicopathological Features, and Prognosis of NSCLC. Mol Ther Oncolytics. 2020;19:208–17. https://doi.org/10.1016/j.omto.2020.10.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pop-Bica C, Pintea S, Magdo L, Cojocneanu R, Gulei D, Ferracin M, Berindan-Neagoe I. The Clinical Utility of miR-21 and let-7 in Non-small Cell Lung Cancer (NSCLC) A Systematic Review and Meta-Analysis. Front Oncol. 2020;10:516850. https://doi.org/10.3389/fonc.2020.516850.
Article
PubMed
PubMed Central
Google Scholar
Liao J, Shen J, Leng Q, Qin M, Zhan M, Jiang F. MicroRNA-based biomarkers for diagnosis of non-small cell lung cancer (NSCLC). Thorac Cancer. 2020;11:762–8. https://doi.org/10.1111/1759-7714.13337.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang H, Jiao Z, Rong W, Qu S, Liao Z, Sun X, Wei Y, Zhao Q, Wang J, Liu Y, et al. 3'-Terminal 2'-O-methylation of lung cancer miR-21-5p enhances its stability and association with Argonaute 2. Nucleic Acids Res. 2020;48:7027–40. https://doi.org/10.1093/nar/gkaa504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL, et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 2012;149:656–70. https://doi.org/10.1016/j.cell.2012.01.058.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim HS, Mendiratta S, Kim J, Pecot CV, Larsen JE, Zubovych I, Seo BY, Kim J, Eskiocak B, Chung H, et al. Systematic identification of molecular subtype-selective vulnerabilities in non-small-cell lung cancer. Cell. 2013;155:552–66. https://doi.org/10.1016/j.cell.2013.09.041.
Article
CAS
PubMed
Google Scholar
Haigis KM. KRAS Alleles: The Devil Is in the Detail. Trends Cancer. 2017;3:686–97. https://doi.org/10.1016/j.trecan.2017.08.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matikas A, Mistriotis D, Georgoulias V, Kotsakis A. Targeting KRAS mutated non-small cell lung cancer: A history of failures and a future of hope for a diverse entity. Crit Rev Oncol Hematol. 2017;110:1–12. https://doi.org/10.1016/j.critrevonc.2016.12.005.
Article
PubMed
Google Scholar
Gillson J, Ramaswamy Y, Singh G, Gorfe AA, Pavlakis N, Samra J, Mittal A, Sahni S. Small Molecule KRAS Inhibitors: The Future for Targeted Pancreatic Cancer Therapy? Cancers (Basel). 2020;12. https://doi.org/10.3390/cancers12051341.
Ross SJ, Revenko AS, Hanson LL, Ellston R, Staniszewska A, Whalley N, Pandey SK, Revill M, Rooney C, Buckett LK, et al. Targeting KRAS-dependent tumors with AZD4785, a high-affinity therapeutic antisense oligonucleotide inhibitor of KRAS. Sci Transl Med. 2017;9. https://doi.org/10.1126/scitranslmed.aal5253.
Wang Y, Wang D, Jia F, Miller A, Tan X, Chen P, Zhang L, Lu H, Fang Y, Kang X, et al. Self-Assembled DNA-PEG Bottlebrushes Enhance Antisense Activity and Pharmacokinetics of Oligonucleotides. ACS Appl Mater Interfaces. 2020;12:45830–7. https://doi.org/10.1021/acsami.0c13995.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kimura K, Matsumoto S, Harada T, Morii E, Nagatomo I, Shintani Y, Kikuchi A. ARL4C is associated with initiation and progression of lung adenocarcinoma and represents a therapeutic target. Cancer Sci. 2020;111:951–61. https://doi.org/10.1111/cas.14303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsumoto S, Fujii S, Kikuchi A. Arl4c is a key regulator of tubulogenesis and tumourigenesis as a target gene of Wnt-beta-catenin and growth factor-Ras signalling. J Biochem. 2017;161:27–35. https://doi.org/10.1093/jb/mvw069.
Article
CAS
PubMed
Google Scholar
Liao J, Chen Z, Yu Z, Huang T, Hu D, Su Y, He Z, Zou C, Zhang L, Lin X. The Role of ARL4C in Erlotinib Resistance: Activation of the Jak2/Stat 5/beta-Catenin Signaling Pathway. Front Oncol. 2020;10:585292. https://doi.org/10.3389/fonc.2020.585292.
Article
PubMed
PubMed Central
Google Scholar
Fujii S, Matsumoto S, Nojima S, Morii E, Kikuchi A. Arl4c expression in colorectal and lung cancers promotes tumorigenesis and may represent a novel therapeutic target. Oncogene. 2015;34:4834–44. https://doi.org/10.1038/onc.2014.402.
Article
CAS
PubMed
Google Scholar
Sasaki S, Izumi H, Morimoto Y, Sakurai K, Mochizuki S. Induction of potent cell growth inhibition by schizophyllan/K-ras antisense complex in combination with gemcitabine. Bioorg Med Chem. 2020;28:115668. https://doi.org/10.1016/j.bmc.2020.115668.
Article
CAS
PubMed
Google Scholar
Fujiwara N, Izumi H, Morimoto Y, Sakurai K, Mochizuki S. Complex consisting of antisense DNA and beta-glucan promotes internalization into cell through Dectin-1 and hybridizes with target mRNA in cytosol. Cancer Gene Ther. 2019;26:32–40. https://doi.org/10.1038/s41417-018-0033-2.
Article
CAS
PubMed
Google Scholar
Tsoni SV, Brown GD. Beta-Glucans and dectin-1. Ann N Y Acad Sci. 2008;1143:45–60. https://doi.org/10.1196/annals.1443.019.
Article
CAS
PubMed
Google Scholar
Zou S, Tong Q, Liu B, Huang W, Tian Y, Fu X. Targeting STAT3 in Cancer Immunotherapy. Mol Cancer. 2020;19:145. https://doi.org/10.1186/s12943-020-01258-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong D, Kurzrock R, Kim Y, Woessner R, Younes A, Nemunaitis J, Fowler N, Zhou T, Schmidt J, Jo M, et al. AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci Transl Med. 2015;7:314ra185. https://doi.org/10.1126/scitranslmed.aac5272.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reilley MJ, McCoon P, Cook C, Lyne P, Kurzrock R, Kim Y, Woessner R, Younes A, Nemunaitis J, Fowler N, et al. STAT3 antisense oligonucleotide AZD9150 in a subset of patients with heavily pretreated lymphoma: results of a phase 1b trial. J Immunother Cancer. 2018;6:119. https://doi.org/10.1186/s40425-018-0436-5.
Article
PubMed
PubMed Central
Google Scholar
Njatcha C, Farooqui M, Kornberg A, Johnson DE, Grandis JR, Siegfried JM. STAT3 Cyclic Decoy Demonstrates Robust Antitumor Effects in Non-Small Cell Lung Cancer. Mol Cancer Ther. 2018;17:1917–26. https://doi.org/10.1158/1535-7163.MCT-17-1194.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han B, Park D, Li R, Xie M, Owonikoko TK, Zhang G, Sica GL, Ding C, Zhou J, Magis AT, et al. Small-Molecule Bcl2 BH4 Antagonist for Lung Cancer Therapy. Cancer Cell. 2015;27:852–63. https://doi.org/10.1016/j.ccell.2015.04.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lam LT, Lin X, Faivre EJ, Yang Z, Huang X, Wilcox DM, Bellin RJ, Jin S, Tahir SK, Mitten M, et al. Vulnerability of Small-Cell Lung Cancer to Apoptosis Induced by the Combination of BET Bromodomain Proteins and BCL2 Inhibitors. Mol Cancer Ther. 2017;16:1511–20. https://doi.org/10.1158/1535-7163.MCT-16-0459.
Article
CAS
PubMed
Google Scholar
Minegishi K, Dobashi Y, Tsubochi H, Tokuda R, Okudela K, Ooi A. Screening of the copy number increase of AKT in lung carcinoma by custom-designed MLPA. Int J Clin Exp Pathol. 2019;12:3344–56.
CAS
PubMed
PubMed Central
Google Scholar
Cheng X, Yu D, Cheng G, Yung BC, Liu Y, Li H, Kang C, Fang X, Tian S, Zhou X, et al. T7 Peptide-Conjugated Lipid Nanoparticles for Dual Modulation of Bcl-2 and Akt-1 in Lung and Cervical Carcinomas. Mol Pharm. 2018;15:4722–32. https://doi.org/10.1021/acs.molpharmaceut.8b00696.
Article
CAS
PubMed
Google Scholar
Cheng X, Liu Q, Li H, Kang C, Liu Y, Guo T, Shang K, Yan C, Cheng G, Lee RJ. Lipid Nanoparticles Loaded with an Antisense Oligonucleotide Gapmer Against Bcl-2 for Treatment of Lung Cancer. Pharm Res. 2017;34:310–20. https://doi.org/10.1007/s11095-016-2063-5.
Article
CAS
PubMed
Google Scholar
Reddy KB. Stem Cells: Current Status and Therapeutic Implications. Genes (Basel). 2020;11. https://doi.org/10.3390/genes11111372.
Lopez-Lazaro M. Cancer arises from stem cells: opportunities for anticancer drug discovery. Drug Discov Today. 2015;20:1285–7. https://doi.org/10.1016/j.drudis.2015.09.006.
Article
PubMed
Google Scholar
Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov. 2009;8:806–23. https://doi.org/10.1038/nrd2137.
Article
CAS
PubMed
Google Scholar
Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, Soh BS, Sun LL, Tai BC, Nga ME, et al. Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell. 2012;148:259–72. https://doi.org/10.1016/j.cell.2011.11.050.
Article
CAS
PubMed
Google Scholar
Lin J, Lee JHJ, Paramasivam K, Pathak E, Wang Z, Pramono ZAD, Lim B, Wee KB, Surana U. Induced-Decay of Glycine Decarboxylase Transcripts as an Anticancer Therapeutic Strategy for Non-Small-Cell Lung Carcinoma. Mol Ther Nucleic Acids. 2017;9:263–73. https://doi.org/10.1016/j.omtn.2017.10.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu R, Xu KP, Tan GS. Cyclooxygenase-2 inhibitors in lung cancer treatment: Bench to bed. Eur J Pharmacol. 2015;769:127–33. https://doi.org/10.1016/j.ejphar.2015.11.007.
Article
CAS
PubMed
Google Scholar
Li W, Yue W, Wang H, Lai B, Yang X, Zhang C, Wang Y, Gu M. Cyclooxygenase-2 is associated with malignant phenotypes in human lung cancer. Oncol Lett. 2016;12:3836–44. https://doi.org/10.3892/ol.2016.5207.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown JR, DuBois RN. Cyclooxygenase as a target in lung cancer. Clin Cancer Res. 2004;10:4266s–9s. https://doi.org/10.1158/1078-0432.CCR-040014.
Article
CAS
PubMed
Google Scholar
Liu B, Qu L, Yan S. Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell Int. 2015;15:106. https://doi.org/10.1186/s12935-015-0260-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu Y, Yang X, Zhao P, Yang Z, Yan C, Guo B, Qian SY. Knockdown of delta-5-desaturase promotes the anti-cancer activity of dihomo-gamma-linolenic acid and enhances the efficacy of chemotherapy in colon cancer cells expressing COX-2. Free Radic Biol Med. 2016;96:67–77. https://doi.org/10.1016/j.freeradbiomed.2016.04.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pang L, Shah H, Wang H, Shu D, Qian SY, Sathish V. EpCAM-Targeted 3WJ RNA Nanoparticle Harboring Delta-5-Desaturase siRNA Inhibited Lung Tumor Formation via DGLA Peroxidation. Mol Ther Nucleic Acids. 2020;22:222–35. https://doi.org/10.1016/j.omtn.2020.08.024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin Z, Cui Z, Li H, Li J, Zhou B. Polymorphisms in the H19 gene and the risk of lung Cancer among female never smokers in Shenyang, China. BMC Cancer. 2018;18:893. https://doi.org/10.1186/s12885-018-4795-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin A, Hu Q, Li C, Xing Z, Ma G, Wang C, Li J, Ye Y, Yao J, Liang K, et al. The LINK-A lncRNA interacts with PtdIns(3,4,5)P3 to hyperactivate AKT and confer resistance to AKT inhibitors. Nat Cell Biol. 2017;19:238–51. https://doi.org/10.1038/ncb3473.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun Q, Wang Y, Fan J, Li Z, Zhang J, Wang L, Fan X, Ji M, Zhu M, Dai J, et al. Association of expression quantitative trait loci for long noncoding RNAs with lung cancer risk in Asians. Mol Carcinog. 2019;58:1303–13. https://doi.org/10.1002/mc.23013.
Article
CAS
PubMed
Google Scholar
Xie W, Wang Y, Zhang Y, Xiang Y, Wu N, Wu L, Li C, Cai T, Ma X, Yu Z, et al. SNP rs4142441 and MYC co-modulated lncRNA OSER1-AS1 suppresses non-small cell lung cancer by sequestering ELAVL1. Cancer Sci. 2020. https://doi.org/10.1111/cas.14713.
Ma J, Qi G, Li L. LncRNA NNT-AS1 promotes lung squamous cell carcinoma progression by regulating the miR-22/FOXM1 axis. Cell Mol Biol Lett. 2020;25:34. https://doi.org/10.1186/s11658-020-00227-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
He W, Zhang Y, Xia S. LncRNA NNT-AS1 promotes non-small cell lung cancer progression through regulating miR-22-3p/YAP1 axis. Thorac Cancer. 2020;11:549–60. https://doi.org/10.1111/1759-7714.13280.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cai Y, Dong ZY, Wang JY. LncRNA NNT-AS1 is a major mediator of cisplatin chemoresistance in non-small cell lung cancer through MAPK/Slug pathway. Eur Rev Med Pharmacol Sci. 2018;22:4879–87. https://doi.org/10.26355/eurrev_201808_15624.
Article
CAS
PubMed
Google Scholar
Gu W, Shi J, Liu H, Zhang X, Zhou JJ, Li M, Zhou D, Li R, Lv J, Wen G, et al. Peripheral blood non-canonical small non-coding RNAs as novel biomarkers in lung cancer. Mol Cancer. 2020;19:159. https://doi.org/10.1186/s12943-020-01280-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu B, Cao W, Qiao G, Yao S, Pan S, Wang L, Yue C, Ma L, Liu Y, Cui D. Effects of gold nanoprism-assisted human PD-L1 siRNA on both gene down-regulation and photothermal therapy on lung cancer. Acta Biomater. 2019;99:307–19. https://doi.org/10.1016/j.actbio.2019.08.046.
Article
CAS
PubMed
Google Scholar
Liu J, Feng Y, Zeng X, He M, Gong Y, Liu Y. Extracellular vesicles-encapsulated let-7i shed from bone mesenchymal stem cells suppress lung cancer via KDM3A/DCLK1/FXYD3 axis. J Cell Mol Med. 2020. https://doi.org/10.1111/jcmm.15866.
Ahn YH, Ko YH. Diagnostic and Therapeutic Implications of microRNAs in Non-Small Cell Lung Cancer. Int J Mol Sci. 2020;21. https://doi.org/10.3390/ijms21228782.
Zhong Y, Ding X, Bian Y, Wang J, Zhou W, Wang X, Li P, Shen Y, Wang JJ, Li J, et al. Discovery and validation of extracellular vesicle-associated miRNAs as non-invasive detection biomarkers for early-stage non-small-cell lung cancer. Mol Oncol. 2020. https://doi.org/10.1002/1878-0261.12889.
Xu S, Zheng L, Kang L, Xu H, Gao L. MicroRNA-let-7e in serum-derived exosomes inhibits the metastasis of non-small-cell lung cancer in a SUV39H2/LSD1/CDH1-dependent manner. Cancer Gene Ther. 2020. https://doi.org/10.1038/s41417-020-00216-1.
Tong J, Lu J, Yin Y, Wang Y, Zhang K. microRNA-195 Promotes Small Cell Lung Cancer Cell Apoptosis via Inhibiting Rap2C Protein-Dependent MAPK Signal Transduction. Technol Cancer Res Treat. 2020;19:1533033820977546. https://doi.org/10.1177/1533033820977546.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tatiparti K, Sau S, Kashaw SK. Iyer AK: siRNA Delivery Strategies: A Comprehensive Review of Recent Developments. Nanomaterials (Basel). 2017;7. https://doi.org/10.3390/nano7040077.
Zhang Y, Schwerbrock NM, Rogers AB, Kim WY, Huang L. Codelivery of VEGF siRNA and gemcitabine monophosphate in a single nanoparticle formulation for effective treatment of NSCLC. Mol Ther. 2013;21:1559–69. https://doi.org/10.1038/mt.2013.120.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang C, Zhao Y, Zhang E, Jiang M, Zhi D, Chen H, Cui S, Zhen Y, Cui J, Zhang S. Co-delivery of paclitaxel and anti-VEGF siRNA by tripeptide lipid nanoparticle to enhance the anti-tumor activity for lung cancer therapy. Drug Deliv. 2020;27:1397–411. https://doi.org/10.1080/10717544.2020.1827085.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodenhuis S, van de Wetering ML, Mooi WJ, Evers SG, van Zandwijk N, Bos JL. Mutational activation of the K-ras oncogene. A possible pathogenetic factor in adenocarcinoma of the lung. N Engl J Med. 1987;317:929–35. https://doi.org/10.1056/NEJM198710083171504.
Article
CAS
PubMed
Google Scholar
Goldberg SB, Schlessinger J, Boyer JL, Herbst RS. A step towards treating KRAS-mutant NSCLC. Lancet Oncol. 2013;14:3–5. https://doi.org/10.1016/S1470-2045(12)70528-4.
Article
PubMed
Google Scholar
Perepelyuk M, Shoyele O, Birbe R, Thangavel C, Liu Y, Den RB, Snook AE, Lu B. Shoyele SA: siRNA-Encapsulated Hybrid Nanoparticles Target Mutant K-ras and Inhibit Metastatic Tumor Burden in a Mouse Model of Lung Cancer. Mol Ther Nucleic Acids. 2017;6:259–68. https://doi.org/10.1016/j.omtn.2016.12.009.
Article
CAS
PubMed
Google Scholar
de Mello RA, Neves NM, Tadokoro H, Amaral GA, Castelo-Branco P, Zia VAA. New Target Therapies in Advanced Non-Small Cell Lung Cancer: A Review of the Literature and Future Perspectives. J Clin Med. 2020:9. https://doi.org/10.3390/jcm9113543.
Imyanitov EN, Iyevleva AG, Levchenko EN. Molecular testing and targeted therapy for non-small cell lung cancer: current status and perspectives. Crit Rev Oncol Hematol. 2020;103194. https://doi.org/10.1016/j.critrevonc.2020.103194.
Chen G, Kronenberger P, Teugels E, Umelo IA, De Greve J: Effect of siRNAs targeting the EGFR T790M mutation in a non-small cell lung cancer cell line resistant to EGFR tyrosine kinase inhibitors and combination with various agents. Biochem Biophys Res Commun 2013, 431:623-629. https://doi.org/10.1016/j.bbrc.2012.12.070
Garbuzenko OB, Kuzmov A, Taratula O, Pine SR, Minko T. Strategy to enhance lung cancer treatment by five essential elements: inhalation delivery, nanotechnology, tumor-receptor targeting, chemo- and gene therapy. Theranostics. 2019;9:8362–76. https://doi.org/10.7150/thno.39816.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu YN, Tsai MF, Wu SG, Chang TH, Tsai TH, Gow CH, Wang HY. Shih JY: miR-146b-5p Enhances the Sensitivity of NSCLC to EGFR Tyrosine Kinase Inhibitors by Regulating the IRAK1/NF-kappaB Pathway. Mol Ther Nucleic Acids. 2020;22:471–83. https://doi.org/10.1016/j.omtn.2020.09.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang M, Xie X, Song X, Gu S, Chang X, Su T, Liang B, Huang D. MiR-506 Suppresses Colorectal Cancer Development by Inhibiting Orphan Nuclear Receptor NR4A1 Expression. J Cancer. 2019;10:3560–70. https://doi.org/10.7150/jca.28272.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu CY, You P, Zhang J, Zhang H, Jiang N. MiR-506-3p acts as a novel tumor suppressor in prostate cancer through targeting GALNT4. Eur Rev Med Pharmacol Sci. 2019;23:5133–8. https://doi.org/10.26355/eurrev_201906_18177.
Article
PubMed
Google Scholar
Zhu XW, Wang J, Zhu MX, Wang YF, Yang SY, Ke XY. MicroRNA-506 inhibits the proliferation and invasion of mantle cell lymphoma cells by targeting B7H3. Biochem Biophys Res Commun. 2019;508:1067–73. https://doi.org/10.1016/j.bbrc.2018.12.055.
Article
CAS
PubMed
Google Scholar
Haque I, Kawsar HI, Motes H, Sharma M, Banerjee S, Banerjee SK, Godwin AK, Huang CH. Downregulation of miR-506-3p Facilitates EGFR-TKI Resistance through Induction of Sonic Hedgehog Signaling in Non-Small-Cell Lung Cancer Cell Lines. Int J Mol Sci. 2020;21. https://doi.org/10.3390/ijms21239307.
Chen T, Liu Y, Chen J, Zheng H, Chen Q, Zhao J. Exosomal miR-3180-3p inhibits proliferation and metastasis of non-small cell lung cancer by downregulating FOXP4. Thorac Cancer. 2020. https://doi.org/10.1111/1759-7714.13759.
Shiraishi K, Okada Y, Takahashi A, Kamatani Y, Momozawa Y, Ashikawa K, Kunitoh H, Matsumoto S, Takano A, Shimizu K, et al. Association of variations in HLA class II and other loci with susceptibility to EGFR-mutated lung adenocarcinoma. Nat Commun. 2016;7:12451. https://doi.org/10.1038/ncomms12451.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li S, Morley M, Lu M, Zhou S, Stewart K, French CA, Tucker HO, Fisher SE, Morrisey EE. Foxp transcription factors suppress a non-pulmonary gene expression program to permit proper lung development. Dev Biol. 2016;416:338–46. https://doi.org/10.1016/j.ydbio.2016.06.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Du H, Bao Y, Liu C, Zhong A, Niu Y. Tang X: miR1395p enhances cisplatin sensitivity in nonsmall cell lung cancer cells by inhibiting cell proliferation and promoting apoptosis via the targeting of Homeobox protein HoxB2. Mol Med Rep. 2021;23. https://doi.org/10.3892/mmr.2020.11743.
Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008;358:2039–49. https://doi.org/10.1056/NEJMra0706596.
Article
CAS
PubMed
PubMed Central
Google Scholar
Apte RS, Chen DS, Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. 2019;176:1248–64. https://doi.org/10.1016/j.cell.2019.01.021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Russo AE, Priolo D, Antonelli G, Libra M, McCubrey JA, Ferrau F. Bevacizumab in the treatment of NSCLC: patient selection and perspectives. Lung Cancer (Auckl). 2017;8:259–69. https://doi.org/10.2147/LCTT.S110306.
Article
CAS
Google Scholar
Yamamoto N, Seto T, Nishio M, Goto K, Yamamoto N, Okamoto I, Yamanaka T, Tanaka M, Takahashi K, Fukuoka M. Erlotinib plus bevacizumab vs erlotinib monotherapy as first-line treatment for advanced EGFR mutation-positive non-squamous non-small-cell lung cancer: Survival