Cunningham D, Atkin W, Lenz HJ, Lynch HT, Minsky B, Nordlinger B, Starling N: Colorectal cancer. Lancet. 2010, 375: 1030-1047. 10.1016/S0140-6736(10)60353-4
Article
PubMed
Google Scholar
Schneider-Stock R, Fakhoury IH, Zaki AM, El-Baba CO, Gali-Muhtasib HU: Thymoquinone: fifty years of success in the battle against cancer models. Drug Discov Today. 2014, 19: 18-30. 10.1016/j.drudis.2013.08.021
Article
CAS
PubMed
Google Scholar
Nessa MU, Beale P, Chan C, Yu JQ, Huq F: Synergism from combinations of cisplatin and oxaliplatin with quercetin and thymoquinone in human ovarian tumour models. Anticancer Res. 2011, 31: 3789-3797.
CAS
PubMed
Google Scholar
Woo CC, Kumar AP, Sethi G, Tan KH: Thymoquinone: potential cure for inflammatory disorders and cancer. Biochem Pharmacol. 2012, 83: 443-451. 10.1016/j.bcp.2011.09.029
Article
CAS
PubMed
Google Scholar
Jafri SH, Glass J, Shi R, Zhang S, Prince M, Kleiner-Hancock H: Thymoquinone and cisplatin as a therapeutic combination in lung cancer: In vitro and in vivo. J Exp Clin Cancer Res. 2010, 29: 87- 10.1186/1756-9966-29-87
Article
PubMed Central
PubMed
Google Scholar
Banerjee S, Kaseb AO, Wang Z, Kong D, Mohammad M, Padhye S, Sarkar FH, Mohammad RM: Antitumor activity of gemcitabine and oxaliplatin is augmented by thymoquinone in pancreatic cancer. Cancer Res. 2009, 69: 5575-5583. 10.1158/0008-5472.CAN-08-4235
Article
CAS
PubMed
Google Scholar
Lei X, Lv X, Liu M, Yang Z, Ji M, Guo X, Dong W: Thymoquinone inhibits growth and augments 5-fluorouracil-induced apoptosis in gastric cancer cells both in vitro and in vivo. Biochem Biophys Res Commun. 2012, 417: 864-868. 10.1016/j.bbrc.2011.12.063
Article
CAS
PubMed
Google Scholar
El-Najjar N, Chatila M, Moukadem H, Vuorela H, Ocker M, Gandesiri M, Schneider-Stock R, Gali-Muhtasib H: Reactive oxygen species mediate thymoquinone-induced apoptosis and activate ERK and JNK signaling. Apoptosis. 2010, 15: 183-195. 10.1007/s10495-009-0421-z
Article
CAS
PubMed
Google Scholar
Gali-Muhtasib H, Kuester D, Mawrin C, Bajbouj K, Diestel A, Ocker M, Habold C, Foltzer-Jourdainne C, Schoenfeld P, Peters B: Thymoquinone triggers inactivation of the stress response pathway sensor CHEK1 and contributes to apoptosis in colorectal cancer cells. Cancer Res. 2008, 68: 5609-5618. 10.1158/0008-5472.CAN-08-0884
Article
CAS
PubMed
Google Scholar
Gali-Muhtasib H, Ocker M, Kuester D, Krueger S, El-Hajj Z, Diestel A, Evert M, El-Najjar N, Peters B, Jurjus A: Thymoquinone reduces mouse colon tumor cell invasion and inhibits tumor growth in murine colon cancer models. J Cell Mol Med. 2008, 12: 330-342.
Article
PubMed Central
PubMed
Google Scholar
Gali-Muhtasib H, Diab-Assaf M, Boltze C, Al-Hmaira J, Hartig R, Roessner A, Schneider-Stock R: Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism. Int J Oncol. 2004, 25: 857-866.
CAS
PubMed
Google Scholar
Gali-Muhtasib HU: Abou Kheir WG, Kheir LA, Darwiche N, Crooks PA: Molecular pathway for thymoquinone-induced cell-cycle arrest and apoptosis in neoplastic keratinocytes. Anticancer Drugs. 2004, 15: 389-399. 10.1097/00001813-200404000-00012
Article
CAS
PubMed
Google Scholar
Yi T, Cho SG, Yi Z, Pang X, Rodriguez M, Wang Y, Sethi G, Aggarwal BB, Liu M: Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways. Mol Cancer Ther. 2008, 7: 1789-1796. 10.1158/1535-7163.MCT-08-0124
Article
PubMed Central
CAS
PubMed
Google Scholar
Woo CC, Hsu A, Kumar AP, Sethi G, Tan KH: Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: the role of p38 MAPK and ROS. PLoS One. 2013, 8: e75356- 10.1371/journal.pone.0075356
Article
PubMed Central
CAS
PubMed
Google Scholar
Attoub S, Sperandio O, Raza H, Arafat K, Al-Salam S: Al Sultan MA, Al Safi M, Takahashi T, Adem A: Thymoquinone as an anticancer agent: evidence from inhibition of cancer cells viability and invasion in vitro and tumor growth in vivo. Fundam Clin Pharmacol. 2013, 27: 557-569. 10.1111/j.1472-8206.2012.01056.x
Article
CAS
PubMed
Google Scholar
Siveen KS, Mustafa N, Li F, Kannaiyan R, Ahn KS, Kumar AP, Chng WJ, Sethi G: Thymoquinone overcomes chemoresistance and enhances the anticancer effects of bortezomib through abrogation of NF-kappaB regulated gene products in multiple myeloma xenograft mouse model. Oncotarget. 2014, 5: 634-648.
Article
PubMed Central
PubMed
Google Scholar
Li F, Rajendran P, Sethi G: Thymoquinone inhibits proliferation, induces apoptosis and chemosensitizes human multiple myeloma cells through suppression of signal transducer and activator of transcription 3 activation pathway. Br J Pharmacol. 2010, 161: 541-554. 10.1111/j.1476-5381.2010.00874.x
Article
PubMed Central
CAS
PubMed
Google Scholar
Sethi G, Ahn KS, Aggarwal BB: Targeting nuclear factor-kappa B activation pathway by thymoquinone: role in suppression of antiapoptotic gene products and enhancement of apoptosis. Mol Cancer Res. 2008, 6: 1059-1070. 10.1158/1541-7786.MCR-07-2088
Article
CAS
PubMed
Google Scholar
Yin Z, Song Y, Rehse PH: Thymoquinone blocks pSer/pThr recognition by Plk1 Polo-box domain as a phosphate mimic. ACS Chem Biol. 2013, 8: 303-308. 10.1021/cb3004379
Article
CAS
PubMed
Google Scholar
Fabbro D, Cowan-Jacob SW, Mobitz H, Martiny-Baron G: Targeting cancer with small-molecular-weight kinase inhibitors. Methods Mol Biol. 2012, 795: 1-34. 10.1007/978-1-61779-337-0_1
Article
CAS
PubMed
Google Scholar
Zhao ZS, Lim JP, Ng YW, Lim L, Manser E: The GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A. Mol Cell. 2005, 20: 237-249. 10.1016/j.molcel.2005.08.035
Article
CAS
PubMed
Google Scholar
Eswaran J, Li DQ, Shah A, Kumar R: Molecular pathways: targeting p21-activated kinase 1 signaling in cancer–opportunities, challenges, and limitations. Clin Cancer Res. 2012, 18: 3743-3749. 10.1158/1078-0432.CCR-11-1952
Article
PubMed Central
CAS
PubMed
Google Scholar
Kichina JV, Goc A, Al-Husein B, Somanath PR, Kandel ES: PAK1 as a therapeutic target. Expert Opin Ther Targets. 2010, 14: 703-725. 10.1517/14728222.2010.492779
Article
PubMed Central
CAS
PubMed
Google Scholar
Wong LL, Lam IP, Wong TY, Lai WL, Liu HF, Yeung LL, Ching YP: IPA-3 inhibits the growth of liver cancer cells by suppressing PAK1 and NF-kappaB activation. PLoS One. 2013, 8: e68843- 10.1371/journal.pone.0068843
Article
PubMed Central
CAS
PubMed
Google Scholar
Zenke FT, King CC, Bohl BP, Bokoch GM: Identification of a central phosphorylation site in p21-activated kinase regulating autoinhibition and kinase activity. J Biol Chem. 1999, 274: 32565-32573. 10.1074/jbc.274.46.32565
Article
CAS
PubMed
Google Scholar
Sundberg-Smith LJ, Doherty JT, Mack CP, Taylor JM: Adhesion stimulates direct PAK1/ERK2 association and leads to ERK-dependent PAK1 Thr212 phosphorylation. J Biol Chem. 2005, 280: 2055-2064.
Article
CAS
PubMed
Google Scholar
Lei M, Lu W, Meng W, Parrini MC, Eck MJ, Mayer BJ, Harrison SC: Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell. 2000, 102: 387-397. 10.1016/S0092-8674(00)00043-X
Article
CAS
PubMed
Google Scholar
Wang J, Wu JW, Wang ZX: Structural insights into the autoactivation mechanism of p21-activated protein kinase. Structure. 2011, 19: 1752-1761. 10.1016/j.str.2011.10.013
Article
CAS
PubMed
Google Scholar
Zhang Y: I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008, 9: 40- 10.1186/1471-2105-9-40
Article
PubMed Central
PubMed
Google Scholar
Roy A, Kucukural A, Zhang Y: I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 2010, 5: 725-738. 10.1038/nprot.2010.5
Article
PubMed Central
CAS
PubMed
Google Scholar
Canagarajah BJ, Khokhlatchev A, Cobb MH, Goldsmith EJ: Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell. 1997, 90: 859-869. 10.1016/S0092-8674(00)80351-7
Article
CAS
PubMed
Google Scholar
Wang Z, Fu M, Wang L, Liu J, Li Y, Brakebusch C, Mei Q: p21-activated kinase 1 (PAK1) can promote ERK activation in a kinase-independent manner. J Biol Chem. 2013, 288: 20093-20099. 10.1074/jbc.M112.426023
Article
PubMed Central
CAS
PubMed
Google Scholar
Howe AK, Aplin AE, Juliano RL: Anchorage-dependent ERK signaling–mechanisms and consequences. Curr Opin Genet Dev. 2002, 12: 30-35. 10.1016/S0959-437X(01)00260-X
Article
CAS
PubMed
Google Scholar
Zhan X, Desiderio DM: Signaling pathway networks mined from human pituitary adenoma proteomics data. BMC Med Genomics. 2010, 3: 13- 10.1186/1755-8794-3-13
Article
PubMed Central
PubMed
Google Scholar
Da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009, 4: 44-57.
Article
PubMed
Google Scholar
Da Huang W, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37: 1-13. 10.1093/nar/gkn923
Article
PubMed
Google Scholar
Comeau SR, Gatchell DW, Vajda S, Camacho CJ: ClusPro: a fully automated algorithm for protein-protein docking. Nucleic Acids Res. 2004, 32: W96-99. 10.1093/nar/gkh354
Article
PubMed Central
CAS
PubMed
Google Scholar
Comeau SR, Gatchell DW, Vajda S, Camacho CJ: ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics. 2004, 20: 45-50. 10.1093/bioinformatics/btg371
Article
CAS
PubMed
Google Scholar
Gohlke H, Kiel C, Case DA: Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J Mol Biol. 2003, 330: 891-913. 10.1016/S0022-2836(03)00610-7
Article
CAS
PubMed
Google Scholar
Sanchez R, Sali A: Comparative protein structure modeling. Introduction and practical examples with modeller. Methods Mol Biol. 2000, 143: 97-129.
CAS
PubMed
Google Scholar
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE: UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 2004, 25: 1605-1612. 10.1002/jcc.20084
Article
CAS
PubMed
Google Scholar