Carter SL, Negrini M, Baffa R, Gillum DR, Rosenberg AL, Schwartz GF, Croce CM: Loss of heterozygosity at 11q22-23 in breast cancer. Cancer Res. 1994, 54: 6270-6274.
CAS
PubMed
Google Scholar
Hamptom GM, Mannermaa A, Winquist R, Alavaikko M, Blanco G, Taskinen PJ, Kiviniemi H, Newsham I, Cavanee WK, Evans GA: Loss of heterozygosity in sporadic human breast carcinoma: A common region between 11q22 and 11q23. Cancer Res. 1994, 54: 4586-4589.
Google Scholar
Gudmundsson J, Barkardottir RB, Eiriksdottir G, Baldusson T, Arason A, Egilsson V, Ingvarsson S: Loss of heterozygosity at chromosome 11 in breast cancer: Association of prognostic factors with genetic alterations. Br J Cancer. 1995, 72: 696-701.
Article
PubMed Central
CAS
PubMed
Google Scholar
Negrini M, Rasio D, Hampton GM, Sabbioni S, Rattan S, Carter SL, Rosenberg AL, Schwartz GF, Shiloh Y, Cavenee WB, Croce CM: Definition and refinement of chromosome 11 regions of loss of heterozygosity in breast cancer: Identification of a new region at 11q23-24. Cancer Res. 1995, 55: 3003-3007.
CAS
PubMed
Google Scholar
Tomlinson IPM, Stickland JE, Lee ASG, Bromley L, Evans MF, Morton J, McGee JOD: Loss of heterozygosity on chromosome 11q in breast cancer. J Clin Pathol. 1995, 48: 424-428.
Article
PubMed Central
CAS
PubMed
Google Scholar
Winqvist R, Hampton GM, Mannermaa A, Blanco G, Alavaikko M, Kiviniemi H, Taskinen PJ, Evans GA, Wright FA, Newsham I, Cavenee WK: Loss of heterozygosity for chromosome 11 in primary human breast tumors is associated with poor survival after metastasis. Cancer Res. 1995, 55: 2660-2664.
CAS
PubMed
Google Scholar
Byrd PJ, Stankovic T, McConville CM, Smith AD, Cooper PR, Taylor AMR: Identification and analysis of expression of human VACM-1, a cullin gene family member located on chromosome 11q22-23. Genome Res. 1997, 7: 71-75.
Article
CAS
PubMed
Google Scholar
Driouch K, Briffod M, Bieche I, Champeme M-H, Lidereau R: Location of several putative genes possibly involved in human breast cancer progression. Cancer Res. 1998, 58: 2081-2086.
CAS
PubMed
Google Scholar
Burnatowska-Hledin MA, Spielman WS, Smith WL, Shi P, Meyer JM, Dewitt DL: Expression cloning of an AVP-activated, calcium-mobilizing receptor from rabbit kidney medulla. Am J Physiol. 1995, 268: F1198-F1210.
CAS
PubMed
Google Scholar
Kipreos ET, Lander LE, Wing JP, He W, Hedgecock EM: cul-1 is required for cell cycle exit in C. elegans and identifies a novel gene family. Cell. 1996, 85: 829-839.
Article
CAS
PubMed
Google Scholar
Mathias N, Johnson SL, Winey M, Adams AE, Goetsch L, Pringle JR, Byers B, Goebl MG: Cdc53p acts in concert Cdc4p and Cdc34p to control the G1-to-S-phase transition and identifies a conserved family of proteins. Mol Cell Biol. 1996, 16: 6634-6643.
PubMed Central
CAS
PubMed
Google Scholar
Dias DC, Dolios G, Wang R, Pan Z-Q: CUL7: A DOC domain-containing cullin selectively binds Skp1Fbx29 to form an SCF-like complex. Proc Natl Acad Sci USA. 2002, 26: 16601-16606. 10.1073/pnas.252646399.
Article
Google Scholar
Arai T, Kasper JS, Skaar JR, Ali SH, Takahashi C, DeCaprio JA: Targeted disruption of p185/Cul7 gene results in abnormal vascular morphogenesis. Proc Natl Acad Sci USA. 2003, 100: 9855-9860. 10.1073/pnas.1733908100
Article
PubMed Central
CAS
PubMed
Google Scholar
Patton EE, Willems AR, Sa D, Kuras L, Thomas D, Craig KL, Tyers M: Cdc53 is a scaffold for multiple Cdc34/Skp1/F-box protein complexes that regulate cell division and methionine biosynthesis in yeast. Genes Dev. 1998, 12: 692-705.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hershko A, Ciechanover A: The Ubiquitin System. Annu Rev Biochem. 1998, 67: 425-479. 10.1146/annurev.biochem.67.1.425
Article
CAS
PubMed
Google Scholar
Deshaies RJ: SCF and CULLIN/RING H2-based ubiquitin ligases. Annu Rev Cell Dev Biol. 1999, 15: 435-467. 10.1146/annurev.cellbio.15.1.435
Article
CAS
PubMed
Google Scholar
Burnatowska-Hledin M, Lazdins IB, Listenberger L, Zhao P, Sharangpani A, Folta V, Card B: VACM-1 receptor is specifically expressed in rabbit vascular endothelium and renal collecting tubule. Am J Physiol. 1999, 276: F199-F209.
CAS
PubMed
Google Scholar
Hori T, Osaka F, Chiba T, Miyamoto C, Okabayashi K, Shimbara N, Kato S, Tanaka K: Covalent modification of all members of human cullin family proteins by NEDD8. Oncogene. 1999, 18: 6829-6834. 10.1038/sj.onc.1203093
Article
CAS
PubMed
Google Scholar
Burnatowska-Hledin M, Zeneberg A, Roulo A, Grobe J, Zhao P, Lelkes PI, Clare P, Barney C: Expression of VACM-1 protein in cultured rat adrenal endothelial cells is linked to the cell cycle. Endothelium. 2001, 8: 49-63.
CAS
PubMed
Google Scholar
Cho RJ, Huang M, Campbell MJ, Dong H, Steinmetz L, Sapinso L, Hampton G, Elledge SJ, Davis RW, Lockhart DJ: Transcriptional regulation and function during the human cell cycle. Nat Genet. 2001, 27: 48-54.
CAS
PubMed
Google Scholar
Dealy J, Nguyen KVT, Lo J, Gstaiger M, Krek W, Elson D, Arbeit J, Kipreos ET, Johnson RS: Loss of Cul1 results in early embryonic lethality and dysregulation of cyclin E. Nat Genet. 1999, 23: 245-248. 10.1038/13886
Article
CAS
PubMed
Google Scholar
Singer JD, Gurian-West M, Clurman B, Roberts JM: Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells. Genes Dev. 1999, 13: 2375-2387. 10.1101/gad.13.18.2375
Article
PubMed Central
CAS
PubMed
Google Scholar
Li B, Ruiz JC, Chun KT: CUL-4A is critical for early embryonic development. Mol Cell Biol. 2002, 22: 4997-5005. 10.1128/MCB.22.14.4997-5005.2002
Article
PubMed Central
CAS
PubMed
Google Scholar
Ceremuga TE, Yao X-L, McCabe JT: Vasopressin-activated calcium mobilizing (VACM-1) receptor mRNA is present in peripheral organs and the central nervous system of the laboratory rat. Endocrine Res. 2001, 27: 433-445. 10.1081/ERC-100107867.
Article
CAS
Google Scholar
Ceremuga TE, Yao X-L, McCabe JT: Cullin-5 is ubiquitous in the rat brain. Neurosci Lett. 2003, 345: 121-125. 10.1016/S0304-3940(03)00298-2
Article
CAS
PubMed
Google Scholar
Li B, Yang F-C, Clapp DW, Chun KT: Enforced expression of CUL-4A interferes with granulocytic differentiation and exit from the cell cycle. Blood. 2003, 101: 1769-1776. 10.1182/blood-2002-05-1517
Article
CAS
PubMed
Google Scholar
Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, Tagle DA, Smith S, Uziel T, Sfez S, Ashkenazi M, Pecker I, Frydman M, Harnik R, Patanjali SR, Simmons A, Clines GA, Sartiel A, Gatti RA, Chessa L, Sanal O, Lavin MF, Jaspers NGJ, Taylor AMR, Arlett CF, Miki T, Weissman SM, Lovett M, Collins SF, Shiloh Y: A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995, 268: 1749-1753.
Article
CAS
PubMed
Google Scholar
Kovalev S, Mateen A, Zaika AI, O'hea BJ, Moll UM: Lack of defective expression of the ATM gene in sporadic breast cancer tissues and cell lines. Int J Oncol. 2000, 16: 825-831.
CAS
PubMed
Google Scholar
Vorechovsky I, Rasio D, Luo L, Monaco C, Hammarstrom L, Webster ABD, Zaloudik J, Barbanti-Brodano G, James M, Russo G, Croce CM, Negrini M: The ATM gene and susceptibility to breast cancer: Analysis of 38 breast tumors reveals no evidence for mutation. Cancer Res. 1996, 56: 2726-2732.
CAS
PubMed
Google Scholar
Fitzgerald MG, Bean JM, Hedge SR, Unsal H, MacDonald DJ, Harkin DP, Finkelstein DM, Isselbacher KJ, Haber DA: Heterozygous ATM mutations do not contribute to early onset of breast cancer. Nat Genet. 1997, 15: 307-310.
Article
CAS
PubMed
Google Scholar
Singhal S, Amin KM, Kruklitis R, Delong P, Friscia ME, Litzky LA, Putt ME, Kaiser LR, Albelda SM: Alterations in Cell Cycle Genes in Early Stage lung adenocarcinoma identified by expression profiling. Cancer Biol Ther. 2003, 2: 291-298.
Article
CAS
PubMed
Google Scholar
Burnatowska-Hledin M, Zhao P, Capps B, Poel A, Parmelee K, Mungall C, Sharangpani A, Listenberger L: VACM-1, a cullin gene family member, regulates cellular signaling. Am J Physiol Cell Physiol. 2000, 279: C266-C273.
CAS
PubMed
Google Scholar
Van Dort C, Zhao P, Parmelee K, Capps B, Poel A, Listenberger L, Kossoris J, Wasilevich B, Murrey D, Clare P, Burnatowska-Hledin M: VACM-1, a cul 5 gene, inhibits cellular growth by a mechanism that involves MAPK and p53 signaling pathways. Am J Physiol Cell Physiol. 2003, 285: C1386-C1396.
Article
CAS
PubMed
Google Scholar
Conaway RC, Brower CS, Conaway JW: Emerging roles of ubiquitin in transcription regulation. Science. 2002, 296: 1254-1258. 10.1126/science.1067466
Article
CAS
PubMed
Google Scholar
Skowyra D, Craig K, Tyers M, Elledge SJ, Harper KW: F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell. 1997, 91: 209-219.
Article
CAS
PubMed
Google Scholar
Listwan J, Marti A, Sutterluty H, Gstaiger M, Wirbelauer C, Krek W: Association of human Cul-1 and ubiquitin-conjugating enzyme CDC34 with the F-box protein p45(SKP2): evidence for evolutionary conservation in the subunit composition of the CDC34-SCF pathway. EMBO J. 1998, 17: 368-383. 10.1093/emboj/17.2.368
Article
Google Scholar
Lyapina SA, Correll CC, Kipreos ET, Deshaies RJ: Human CUL1 forms an evolutionarily conserved ubiquitin ligase complex (SCF) with SKP1 and an F-box protein. Proc Natl Acad Sci USA. 1998, 95: 7451-7456. 10.1073/pnas.95.13.7451
Article
PubMed Central
CAS
PubMed
Google Scholar
Yu ZK, Gervais JL, Zhang H: Human CUL-1 associates with the SKP1/SKP2 complex and regulate p21CIP1/WAF1 and cyclin D proteins. Proc Natl Acad Sci USA. 1998, 95: 11324-11329. 10.1073/pnas.95.19.11324
Article
PubMed Central
CAS
PubMed
Google Scholar
Carrano AC, Eytan E, Hershko A, Pagano M: SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol. 1999, 1: 193-199. 10.1038/12013
Article
CAS
PubMed
Google Scholar
Hatakeyama S, Kitagawa M, Nakayama K, Shirane M, Matsumoto M, Hattori K, Higashi H, Nakano H, Okumura K, Onoe K, Good RA, Nakayama K: Ubiquitin-dependent degradation of Iκ Bα is mediated by a ubiquitin ligase Skp1/Cul1/F-box protein FWD1. Proc Natl Acad Sci USA. 1999, 96: 3859-3863. 10.1073/pnas.96.7.3859
Article
PubMed Central
CAS
PubMed
Google Scholar
Kroll M, Margottin F, Kohl A, Renard P, Durand H, Concordet JP, Bachelerie F, Arenzana-Seisdeos F, Benarous R: Inducible degradation of IkappaBalpha by the proteasome requires interaction with the f-box protein h-betaTrCP. J Biol Chem. 1999, 274: 7941-7945. 10.1074/jbc.274.12.7941
Article
CAS
PubMed
Google Scholar
Latres E, Chiaur DS, Pagano M: The human F box protein beta-Trcp associates with Cul1/Skp1 complex and regulates the stability of beta-catenin. Oncogene. 1999, 18: 849-854. 10.1038/sj.onc.1202653
Article
CAS
PubMed
Google Scholar
Marti A, Wirbelauer C, Scheffner M, Krek W: Interactions between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nat Cell Biol. 1999, 1: 14-19. 10.1038/8984
Article
CAS
PubMed
Google Scholar
Ohta T, Michel JJ, Schottelius AJ, Xiong Y: ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol Cell. 1999, 3: 535-541.
Article
CAS
PubMed
Google Scholar
Sutterluty H, Chatelain E, Marti A, Wirbelauer C, Senften M, Muller U, Krek W: p45SKP2 promotes p27KIP1 degradation and induces S phase in quiescent cells. Nat Cell Biol. 1999, 1: 207-214. 10.1038/12027
Article
CAS
PubMed
Google Scholar
Suzuki H, Chiba T, Kobayashi M, Takeuchi M, Suzuki T, Ichiyama A, Ikenoue T, Omata M, Furuichi K, Tanaka K: IkappaBalpha ubiquitination is catalyzed by an SCF-like complex containing SKP-1, cullin-1, and two F-box/WD40-repeat proteins, betaTrCP1 and betaTrCP2. Biochem Biophys Res Commun. 1999, 256: 127-132. 10.1006/bbrc.1999.0289
Article
CAS
PubMed
Google Scholar
Tsvetkov LM, Yeh KH, Lee SJ, Sun H, Zhang H: P27Kip1 ubiquitination and degradation is regulated by the SCFSKP2 complex through phosphorylated Thr187 in p27. Curr Biol. 1999, 9: 661-664. 10.1016/S0960-9822(99)80290-5
Article
CAS
PubMed
Google Scholar
Winston JT, Strack P, Beer-Romero P, Chu CY, Elledge SJ, Harper JW: The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev. 1999, 13: 270-283. 10.1101/gad.13.21.2751
Article
PubMed Central
CAS
PubMed
Google Scholar
Maeda I, Ohta T, Koizumi H, Fukuda M: In vitro ubiquitination of cyclin D1 by ROC1-CUL1 and ROC1-CUL3. FEBS Lett. 2001, 494: 181-185. 10.1016/S0014-5793(01)02343-2
Article
CAS
PubMed
Google Scholar
Michel JJ, Xiong Y: Human CUL-1, but not other cullin family members, selectively interacts with SKP1 to form a complex with SKP2 and cyclin A. Cell Growth Differ. 1998, 19: 435-449.
Google Scholar
Kamura T, Burian D, Yan Q, Schmidt SL, Lane WS, Querido E, Branton PE, Shilatifard A, Conaway RC, Conaway JW: MUF1, a novel elongin BC-interacting leucine-rich protein that can assemble with cul5 and rbx1 to reconstitute a ubiquitin ligase. J Biol Chem. 2001, 276: 29748-29753. 10.1074/jbc.M103093200
Article
CAS
PubMed
Google Scholar
Ohta T, Xiong Y: Phosphorylation- and SKP1-independent in Vitro ubiquitination of E2f1 by multiple ROC-cullin ligases. Cancer Res. 2001, 61: 1347-1353.
CAS
PubMed
Google Scholar
Furukawa M, Ohta T, Xiong Y: Activation of UBC5 ubiquitin-conjugating enzyme by the RING finger of ROC1 and assembly of active ubiquitin ligases by all cullins. J Biol Chem. 2002, 277: 15758-15765. 10.1074/jbc.M108565200
Article
CAS
PubMed
Google Scholar
Lisztwan J, Imbert G, Wirbelauer C, Gstaiger M, Krek W: The von Hipple-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Genes Dev. 1999, 13: 1822-1833.
Article
PubMed Central
CAS
PubMed
Google Scholar
Iwai K, Yamanaka K, Kamura T, Minato N, Conaway RC, Conaway JW, Klausner RD, Pause A: Identification of the von-Hippel-Lindau tumor-suppressor protein as an active E3 ubiquitin ligase complex. Proc Natl Acad Sci USA. 1999, 96: 12436-12441. 10.1073/pnas.96.22.12436
Article
PubMed Central
CAS
PubMed
Google Scholar
Brower S, Sato S, Tomomori-Sato C, Kamura T, Pause A, Stearman S, Klausner RD, Malik S, Lane WS, Sorokina I, Roeder RG, Conaway JW, Conaway RC: Mammalian mediator subunit mMED8 is an elongin BC-interacting protein that can assemble with cul2 and Rbx1 to reconstitute a ubiquitin ligase. Proc Natl Acad Sci USA. 2002, 99: 10353-10358. 10.1073/pnas.162424199
Article
PubMed Central
CAS
PubMed
Google Scholar
Iliopoulos O, Levy AP, Jiang C, Kaelin WG, Goldberg MA: Negative regulation of hypoxia-inducible genes by von Hippel-Lindau protein. Proc Natl Acad Sci USA. 1996, 93: 10595-10599. 10.1073/pnas.93.20.10595
Article
PubMed Central
CAS
PubMed
Google Scholar
Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ: The tumor suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999, 399: 271-275. 10.1038/20459
Article
CAS
PubMed
Google Scholar
Cockman ME, Masson N, Mole DR, Jaakkola P, Chang G-W, Clifford SC, Mahert ER, Pugh CW, Ratcliffe PJ, Maxwell PH: Hypoxia inducible factor-α binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem. 2000, 275: 25733-25741. 10.1074/jbc.M002740200
Article
CAS
PubMed
Google Scholar
Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, Kaelin WG: Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol. 2000, 2: 423-427. 10.1038/35017054
Article
CAS
PubMed
Google Scholar
Kamura T, Sato S, Iwai K, Czyzyk-Krzeska M, Conaway RC, Conaway JW: Activation of HIF1α ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc Natl Acad Sci USA. 2000, 97: 10430-10435. 10.1073/pnas.190332597
Article
PubMed Central
CAS
PubMed
Google Scholar
Tanimoto K, Makino Y, Pereira T, Poellinger L: Mechanism of regulation of the hypoxia-indicible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J. 2000, 19: 4298-4309. 10.1093/emboj/19.16.4298
Article
PubMed Central
CAS
PubMed
Google Scholar
Kaelin WG: Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer. 2002, 2: 673-682. 10.1038/nrc885
Article
CAS
PubMed
Google Scholar
Feng H, Zhong W, Punkosdy G, Gu S, Zhou L, Seabolt EK, Kipreos ET: CUL-2 is required for the G1-to-S phase transition and mitotic chromosome condensation in Caenorhabditis elegans. Nat Cell Biol. 1999, 1: 486-492. 10.1038/70272
Article
CAS
PubMed
Google Scholar
Du M, Sansores-Garcia L, Zu Z, Wu KK: Cloning and expression analysis of a novel salicylate suppressible gene, Hs-CUL-3, a member of the Cullin/Cdc53 family. J Biol Chem. 1998, 273: 24289-24292. 10.1074/jbc.273.38.24289
Article
CAS
PubMed
Google Scholar
Chen L-C, Manjeshwar S, Lu Y, Moore D, Ljung B-M, Kuo W-L, Dairkee SH, Wernick M, Collins C, Smith HS: The human homologue for the Caenorhabditis elegans cul-4 gene is amplified and overexpressed in primary breast cancers. Cancer Res. 1998, 58: 3677-3683.
CAS
PubMed
Google Scholar
Gupta A, Yang L-X, Chen L-C: Study of the G2/M cell cycle checkpoint in irradiated mammary epithelial cells overexpressing Cul-4A gene. Int J Radiat Oncol Biol Phys. 2002, 52: 822-830. 10.1016/S0360-3016(01)02739-0
Article
CAS
PubMed
Google Scholar
Nag A, Bondar T, Siv S, Raychaudhuri P: The xeroderma pigmentosum group E gene product DDB2 is a specific target of cullin 4A in mammalian cells. Mol Cell Biol. 2001, 21: 6738-6747. 10.1128/MCB.21.20.6738-6747.2001
Article
PubMed Central
CAS
PubMed
Google Scholar
Shiyanov P, Nag A, Raychaudhuri P: Cullin 4A associates with the UV-damaged DNA binding protein DDB. J Biol Chem. 1999, 274: 35309-35312. 10.1074/jbc.274.50.35309
Article
CAS
PubMed
Google Scholar
Zhong W, Feng H, Santiago FE, Kipreos ET: CUL-4 ubiquitin ligase maintains genome stability by restraining DNA-replication licensing. Nature. 2003, 423: 885-889. 10.1038/nature01747
Article
CAS
PubMed
Google Scholar
Querido E, Blanchette P, Yan Q, Kamura T, Morrison M, Boivin D, Kaelin WG, Conaway RC, Conaway JW, Branton PE: Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a cullin-containing complex. Genes Dev. 2001, 15: 3104-3117. 10.1101/gad.926401
Article
PubMed Central
CAS
PubMed
Google Scholar
Harada JN, Shevchenko A, Shevchenko A, Pallas DC, Berk AJ: Analysis of the adenovirus E1B-55K-anchored proteome reveals its link to the ubiquitination machinery. J Virol. 2002, 76: 9194-9206. 10.1128/JVI.76.18.9194-9206.2002
Article
PubMed Central
CAS
PubMed
Google Scholar
Soule HD, Maloney TM, Wolman SR, Peterson WD, Brenz R, McGrath CM, Russo J, Pauley RJ, Jones RF, Brooks SC: Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 1990, 50: 6075-6086.
CAS
PubMed
Google Scholar
Tait L, Soule SD, Russo J: Ultrastructural and immunocytochemical characterization of an immortalized human breast epithelial cell line, MCF-10. Cancer Res. 1990, 50: 6087-6094.
CAS
PubMed
Google Scholar
Soule HD, Vazques J, Long A, Albert S, Brennan MA: A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst. 1973, 51: 1409-1416.
CAS
PubMed
Google Scholar
Cailleau R, Young R, Olive M, Reeves WJJ: Breast tumor cell lines from pleural effusions. J Natl Cancer Inst. 1973, 53: 661-666.
Google Scholar
Zinda MJ, Johnson MA, Paul JD, Horn C, Konicek BW, Lu ZH, Sandusky G, Thomas JE, Neubauer BL, Lai MT, Graff JR: AKT-1, -2, and -3 are expressed in both normal and tumor tissues of the lung, breast, prostate, and colon. Clin Cancer Res. 2001, 7: 2475-2479.
CAS
PubMed
Google Scholar
Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227: 680-685.
Article
CAS
PubMed
Google Scholar
Spanakis E: Problems related to the interpretation of autoradiographic data on gene expression using common constitutive transcripts as controls. Nucleic Acids Res. 1993, 21: 3809-3819.
Article
PubMed Central
CAS
PubMed
Google Scholar
Spanakis E, Brouty-Boye D: Evaluation of quantitative variation in gene expression. Nucleic Acids Res. 1994, 22: 799-806.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liew CC, Hwang DM, Fung YW, Laurenson C, Cukerman E, Tsui S, Lee CY: A catalog of genes in the cardiovascular system as identified by expressed sequence tags. Proc Natl Acad Sci USA. 1994, 91: 10145-10649.
Article
Google Scholar
Zhumabayeva B, Diatchenko A, Chenchik A, Siebert PD: Use of SMART™-generated cDNA for gene expression studies in multiple human tumors. Biotechniques. 2001, 30: 158-163.
CAS
PubMed
Google Scholar
Disease Profiling Array Information. http://bioinfo.clontech.com/dparray